Solveeit Logo

Question

Question: A U-tube contains two liquids in static equilibrium: Water of density $\rho_w$ (= 1000 kg/m³) is in ...

A U-tube contains two liquids in static equilibrium: Water of density ρw\rho_w (= 1000 kg/m³) is in the right arm, oil of unknown density ρ\rho is the left arm as shown in figure. Measurement give ll = 135 mm and d = 12.5 mm. The density of oil is

A

1092 kg/m³

B

961 kg/m³

C

915 kg/m³

D

843 kg/m³

Answer

915 kg/m³

Explanation

Solution

The principle of hydrostatic equilibrium states that the pressure at the same horizontal level in a continuous fluid is equal. Considering the horizontal level at the interface between the oil and water: Pressure in the right arm (water): Pright=Patm+ρwglP_{right} = P_{atm} + \rho_w g l Pressure in the left arm (oil): Pleft=Patm+ρg(l+d)P_{left} = P_{atm} + \rho g (l+d) Equating the pressures: Patm+ρwgl=Patm+ρg(l+d)P_{atm} + \rho_w g l = P_{atm} + \rho g (l+d) ρwl=ρ(l+d)\rho_w l = \rho (l+d) Solving for ρ\rho: ρ=ρwll+d\rho = \rho_w \frac{l}{l+d} Substituting the given values: ρ=1000 kg/m³×135 mm135 mm+12.5 mm\rho = 1000 \text{ kg/m³} \times \frac{135 \text{ mm}}{135 \text{ mm} + 12.5 \text{ mm}} ρ=1000 kg/m³×135147.5\rho = 1000 \text{ kg/m³} \times \frac{135}{147.5} ρ=1000×13501475=1000×5459915.254 kg/m³\rho = 1000 \times \frac{1350}{1475} = 1000 \times \frac{54}{59} \approx 915.254 \text{ kg/m³} The closest option is 915 kg/m³.