Solveeit Logo

Question

Question: ( ln x ) 2 − 3 ln x + 3 ln x − 1 < 1...

( ln x ) 2 − 3 ln x + 3 ln x − 1 < 1

Answer

(er3,1)(er1,er2)(e^{r_3}, 1) \cup (e^{r_1}, e^{r_2}) where r1,r2,r3r_1, r_2, r_3 are roots of y33y22y+3=0y^3 - 3y^2 - 2y + 3 = 0.

Explanation

Solution

Let y=lnxy = \ln x. The inequality becomes y23y+3y1<1y^2 - 3y + \frac{3}{y} - 1 < 1. The domain requires x>0x > 0 and lnx0\ln x \neq 0, so x1x \neq 1. Thus, x(0,){1}x \in (0, \infty) \setminus \{1\}. For y=lnxy = \ln x, the domain for yy is (,){0}(-\infty, \infty) \setminus \{0\}.

The inequality is y23y+3y2<0y^2 - 3y + \frac{3}{y} - 2 < 0.

Let's consider the original inequality again. (lnx)23lnx+3lnx1<1(\ln x)^2 - 3 \ln x + \frac{3}{\ln x} - 1 < 1. Let y=lnxy = \ln x. y23y+3y2<0y^2 - 3y + \frac{3}{y} - 2 < 0.

Let's consider the function f(y)=y23y+3y2f(y) = y^2 - 3y + \frac{3}{y} - 2. We want to find yy such that f(y)<0f(y) < 0.

Let's examine the behavior of f(y)f(y) as y0+y \to 0^+, y0y \to 0^-, yy \to \infty, yy \to -\infty. As y0+y \to 0^+, f(y)3y+f(y) \approx \frac{3}{y} \to +\infty. As y0y \to 0^-, f(y)3yf(y) \approx \frac{3}{y} \to -\infty. As yy \to \infty, f(y)y2+f(y) \approx y^2 \to +\infty. As yy \to -\infty, f(y)y2+f(y) \approx y^2 \to +\infty.

We need to find the roots of f(y)=0f(y) = 0, which is y33y22y+3=0y^3 - 3y^2 - 2y + 3 = 0. Let the roots be r1,r2,r3r_1, r_2, r_3.

The inequality is P(y)y<0\frac{P(y)}{y} < 0. This holds when P(y)P(y) and yy have opposite signs.

Case 1: y>0y > 0 and P(y)<0P(y) < 0. For y>0y > 0, the roots of P(y)P(y) are r1(0,1)r_1 \in (0, 1) and r2(3,4)r_2 \in (3, 4). P(y)P(y) is positive for 0<y<r10 < y < r_1, negative for r1<y<r2r_1 < y < r_2, and positive for y>r2y > r_2. So, for y>0y > 0, P(y)<0P(y) < 0 when r1<y<r2r_1 < y < r_2.

Case 2: y<0y < 0 and P(y)>0P(y) > 0. For y<0y < 0, the only root of P(y)P(y) is r3(2,1)r_3 \in (-2, -1). P(y)P(y) is negative for y<r3y < r_3 and positive for r3<y<0r_3 < y < 0. So, for y<0y < 0, P(y)>0P(y) > 0 when r3<y<0r_3 < y < 0.

Combining the cases, the solution for y=lnxy = \ln x is y(r3,0)(r1,r2)y \in (r_3, 0) \cup (r_1, r_2). Substituting back y=lnxy = \ln x: r3<lnx<0    er3<x<e0=1r_3 < \ln x < 0 \implies e^{r_3} < x < e^0 = 1. r1<lnx<r2    er1<x<er2r_1 < \ln x < r_2 \implies e^{r_1} < x < e^{r_2}.

The solution for xx is x(er3,1)(er1,er2)x \in (e^{r_3}, 1) \cup (e^{r_1}, e^{r_2}). We know r3(2,1)r_3 \in (-2, -1), r1(0,1)r_1 \in (0, 1), r2(3,4)r_2 \in (3, 4). So er3(e2,e1)e^{r_3} \in (e^{-2}, e^{-1}). er1(e0,e1)=(1,e)e^{r_1} \in (e^0, e^1) = (1, e). er2(e3,e4)e^{r_2} \in (e^3, e^4).

The solution set is (er3,1)(er1,er2)(e^{r_3}, 1) \cup (e^{r_1}, e^{r_2}), where r1,r2,r3r_1, r_2, r_3 are the roots of the equation (lnx)33(lnx)22(lnx)+3=0(\ln x)^3 - 3(\ln x)^2 - 2(\ln x) + 3 = 0. Since the roots of the cubic are not simple rational numbers, the solution must be expressed in terms of these roots.