Question
Question: $\displaystyle \lim_{x \to 0} \frac{(\cos x)^{\csc^2 x} - e^{\csc^2 x (\cos x -1)}}{x^2} $...
x→0limx2(cosx)csc2x−ecsc2x(cosx−1)

−8e1
Solution
The problem asks to evaluate the limit: L=limx→0x2(cosx)csc2x−ecsc2x(cosx−1) This limit is of the form 00. We will use Taylor series expansions for cosx and sinx around x=0. We need expansions up to x4 for the numerator to get a non-zero constant term after dividing by x2.
The Taylor series expansions for cosx and sinx are: cosx=1−2!x2+4!x4−O(x6)=1−2x2+24x4−O(x6) sinx=x−3!x3+O(x5)=x−6x3+O(x5) From these, we can find the expansion for sin2x: sin2x=(x−6x3+O(x5))2=x2−2⋅x⋅6x3+O(x6)=x2−3x4+O(x6)
Let's evaluate the first term in the numerator, A=(cosx)csc2x. We take the natural logarithm: lnA=csc2xln(cosx)=sin2xln(cosx) First, expand ln(cosx). Let u=cosx−1. u=(1−2x2+24x4)−1+O(x6)=−2x2+24x4+O(x6) Using the expansion ln(1+u)=u−2u2+O(u3): ln(cosx)=ln(1+u)=(−2x2+24x4)−21(−2x2)2+O(x6) ln(cosx)=−2x2+24x4−8x4+O(x6)=−2x2+(241−243)x4+O(x6) ln(cosx)=−2x2−242x4+O(x6)=−2x2−12x4+O(x6) Now substitute this into the expression for lnA: lnA=x2−3x4+O(x6)−2x2−12x4+O(x6)=1−3x2+O(x4)−21−12x2+O(x4) Using the approximation 1−y1=1+y+y2+O(y3) for small y: lnA=(−21−12x2)(1+3x2+(3x2)2)+O(x6) lnA=(−21−12x2)(1+3x2+9x4)+O(x6) lnA=−21−6x2−18x4−12x2−36x4+O(x6) lnA=−21+(−61−121)x2+(−181−361)x4+O(x6) lnA=−21+(−122−121)x2+(−362−361)x4+O(x6) lnA=−21−123x2−363x4+O(x6) lnA=−21−4x2−12x4+O(x6) Now, A=elnA=e−1/2−x2/4−x4/12+O(x6)=e−1/2e−x2/4−x4/12+O(x6). Using the approximation ey=1+y+2!y2+O(y3): A=e−1/2(1+(−4x2−12x4)+2!1(−4x2)2+O(x6)) A=e−1/2(1−4x2−12x4+32x4+O(x6)) A=e−1/2(1−4x2+(−968+963)x4+O(x6)) A=e−1/2(1−4x2−965x4+O(x6))
Now let's evaluate the exponent of the second term in the numerator, K=csc2x(cosx−1). K=sin2xcosx−1=x2−3x4+O(x6)(−2x2+24x4)+O(x6)=1−3x2+O(x4)−21+24x2+O(x4) K=(−21+24x2)(1+3x2+(3x2)2)+O(x6) K=(−21+24x2)(1+3x2+9x4)+O(x6) K=−21−6x2−18x4+24x2+72x4+O(x6) K=−21+(−61+241)x2+(−181+721)x4+O(x6) K=−21+(−244+241)x2+(−724+721)x4+O(x6) K=−21−243x2−723x4+O(x6) K=−21−8x2−24x4+O(x6) Let B=ecsc2x(cosx−1)=eK. B=e−1/2−x2/8−x4/24+O(x6)=e−1/2e−x2/8−x4/24+O(x6) B=e−1/2(1+(−8x2−24x4)+2!1(−8x2)2+O(x6)) B=e−1/2(1−8x2−24x4+128x4+O(x6)) B=e−1/2(1−8x2+(−241+1281)x4+O(x6)) B=e−1/2(1−8x2−38413x4+O(x6))
Now, substitute A and B back into the limit expression: L=limx→0x2e−1/2(1−4x2−965x4)−e−1/2(1−8x2−38413x4)+O(x6) L=limx→0x2e−1/2[(1−4x2−965x4)−(1−8x2−38413x4)]+O(x6) L=limx→0x2e−1/2[−4x2+8x2−965x4+38413x4]+O(x6) L=limx→0x2e−1/2[(−82+81)x2+(−38420+38413)x4]+O(x6) L=limx→0x2e−1/2[−8x2−3847x4]+O(x6) Divide by x2: L=limx→0e−1/2[−81−3847x2]+O(x4) As x→0, the terms with x2 and higher powers go to zero. L=e−1/2(−81)=−8e1
The final answer is −8e1.