Solveeit Logo

Question

Question: $\displaystyle \lim_{x \to 0} \frac{(\cos x)^{\csc^2 x} - e^{\csc^2 x (\cos x -1)}}{x^2} $...

limx0(cosx)csc2xecsc2x(cosx1)x2\displaystyle \lim_{x \to 0} \frac{(\cos x)^{\csc^2 x} - e^{\csc^2 x (\cos x -1)}}{x^2}

Answer

18e\displaystyle -\frac{1}{8\sqrt{e}}

Explanation

Solution

The problem asks to evaluate the limit: L=limx0(cosx)csc2xecsc2x(cosx1)x2L = \lim_{x \to 0} \frac{(\cos x)^{\csc^2 x} - e^{\csc^2 x (\cos x -1)}}{x^2} This limit is of the form 00\frac{0}{0}. We will use Taylor series expansions for cosx\cos x and sinx\sin x around x=0x=0. We need expansions up to x4x^4 for the numerator to get a non-zero constant term after dividing by x2x^2.

The Taylor series expansions for cosx\cos x and sinx\sin x are: cosx=1x22!+x44!O(x6)=1x22+x424O(x6)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - O(x^6) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - O(x^6) sinx=xx33!+O(x5)=xx36+O(x5)\sin x = x - \frac{x^3}{3!} + O(x^5) = x - \frac{x^3}{6} + O(x^5) From these, we can find the expansion for sin2x\sin^2 x: sin2x=(xx36+O(x5))2=x22xx36+O(x6)=x2x43+O(x6)\sin^2 x = \left(x - \frac{x^3}{6} + O(x^5)\right)^2 = x^2 - 2 \cdot x \cdot \frac{x^3}{6} + O(x^6) = x^2 - \frac{x^4}{3} + O(x^6)

Let's evaluate the first term in the numerator, A=(cosx)csc2xA = (\cos x)^{\csc^2 x}. We take the natural logarithm: lnA=csc2xln(cosx)=ln(cosx)sin2x\ln A = \csc^2 x \ln(\cos x) = \frac{\ln(\cos x)}{\sin^2 x} First, expand ln(cosx)\ln(\cos x). Let u=cosx1u = \cos x - 1. u=(1x22+x424)1+O(x6)=x22+x424+O(x6)u = \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) - 1 + O(x^6) = -\frac{x^2}{2} + \frac{x^4}{24} + O(x^6) Using the expansion ln(1+u)=uu22+O(u3)\ln(1+u) = u - \frac{u^2}{2} + O(u^3): ln(cosx)=ln(1+u)=(x22+x424)12(x22)2+O(x6)\ln(\cos x) = \ln(1+u) = \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) - \frac{1}{2}\left(-\frac{x^2}{2}\right)^2 + O(x^6) ln(cosx)=x22+x424x48+O(x6)=x22+(124324)x4+O(x6)\ln(\cos x) = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^4}{8} + O(x^6) = -\frac{x^2}{2} + \left(\frac{1}{24} - \frac{3}{24}\right)x^4 + O(x^6) ln(cosx)=x222x424+O(x6)=x22x412+O(x6)\ln(\cos x) = -\frac{x^2}{2} - \frac{2x^4}{24} + O(x^6) = -\frac{x^2}{2} - \frac{x^4}{12} + O(x^6) Now substitute this into the expression for lnA\ln A: lnA=x22x412+O(x6)x2x43+O(x6)=12x212+O(x4)1x23+O(x4)\ln A = \frac{-\frac{x^2}{2} - \frac{x^4}{12} + O(x^6)}{x^2 - \frac{x^4}{3} + O(x^6)} = \frac{-\frac{1}{2} - \frac{x^2}{12} + O(x^4)}{1 - \frac{x^2}{3} + O(x^4)} Using the approximation 11y=1+y+y2+O(y3)\frac{1}{1-y} = 1+y+y^2+O(y^3) for small yy: lnA=(12x212)(1+x23+(x23)2)+O(x6)\ln A = \left(-\frac{1}{2} - \frac{x^2}{12}\right)\left(1 + \frac{x^2}{3} + \left(\frac{x^2}{3}\right)^2\right) + O(x^6) lnA=(12x212)(1+x23+x49)+O(x6)\ln A = \left(-\frac{1}{2} - \frac{x^2}{12}\right)\left(1 + \frac{x^2}{3} + \frac{x^4}{9}\right) + O(x^6) lnA=12x26x418x212x436+O(x6)\ln A = -\frac{1}{2} - \frac{x^2}{6} - \frac{x^4}{18} - \frac{x^2}{12} - \frac{x^4}{36} + O(x^6) lnA=12+(16112)x2+(118136)x4+O(x6)\ln A = -\frac{1}{2} + \left(-\frac{1}{6} - \frac{1}{12}\right)x^2 + \left(-\frac{1}{18} - \frac{1}{36}\right)x^4 + O(x^6) lnA=12+(212112)x2+(236136)x4+O(x6)\ln A = -\frac{1}{2} + \left(-\frac{2}{12} - \frac{1}{12}\right)x^2 + \left(-\frac{2}{36} - \frac{1}{36}\right)x^4 + O(x^6) lnA=123x2123x436+O(x6)\ln A = -\frac{1}{2} - \frac{3x^2}{12} - \frac{3x^4}{36} + O(x^6) lnA=12x24x412+O(x6)\ln A = -\frac{1}{2} - \frac{x^2}{4} - \frac{x^4}{12} + O(x^6) Now, A=elnA=e1/2x2/4x4/12+O(x6)=e1/2ex2/4x4/12+O(x6)A = e^{\ln A} = e^{-1/2 - x^2/4 - x^4/12 + O(x^6)} = e^{-1/2} e^{-x^2/4 - x^4/12 + O(x^6)}. Using the approximation ey=1+y+y22!+O(y3)e^y = 1+y+\frac{y^2}{2!} + O(y^3): A=e1/2(1+(x24x412)+12!(x24)2+O(x6))A = e^{-1/2} \left(1 + \left(-\frac{x^2}{4} - \frac{x^4}{12}\right) + \frac{1}{2!}\left(-\frac{x^2}{4}\right)^2 + O(x^6)\right) A=e1/2(1x24x412+x432+O(x6))A = e^{-1/2} \left(1 - \frac{x^2}{4} - \frac{x^4}{12} + \frac{x^4}{32} + O(x^6)\right) A=e1/2(1x24+(896+396)x4+O(x6))A = e^{-1/2} \left(1 - \frac{x^2}{4} + \left(-\frac{8}{96} + \frac{3}{96}\right)x^4 + O(x^6)\right) A=e1/2(1x245x496+O(x6))A = e^{-1/2} \left(1 - \frac{x^2}{4} - \frac{5x^4}{96} + O(x^6)\right)

Now let's evaluate the exponent of the second term in the numerator, K=csc2x(cosx1)K = \csc^2 x (\cos x -1). K=cosx1sin2x=(x22+x424)+O(x6)x2x43+O(x6)=12+x224+O(x4)1x23+O(x4)K = \frac{\cos x - 1}{\sin^2 x} = \frac{\left(-\frac{x^2}{2} + \frac{x^4}{24}\right) + O(x^6)}{x^2 - \frac{x^4}{3} + O(x^6)} = \frac{-\frac{1}{2} + \frac{x^2}{24} + O(x^4)}{1 - \frac{x^2}{3} + O(x^4)} K=(12+x224)(1+x23+(x23)2)+O(x6)K = \left(-\frac{1}{2} + \frac{x^2}{24}\right)\left(1 + \frac{x^2}{3} + \left(\frac{x^2}{3}\right)^2\right) + O(x^6) K=(12+x224)(1+x23+x49)+O(x6)K = \left(-\frac{1}{2} + \frac{x^2}{24}\right)\left(1 + \frac{x^2}{3} + \frac{x^4}{9}\right) + O(x^6) K=12x26x418+x224+x472+O(x6)K = -\frac{1}{2} - \frac{x^2}{6} - \frac{x^4}{18} + \frac{x^2}{24} + \frac{x^4}{72} + O(x^6) K=12+(16+124)x2+(118+172)x4+O(x6)K = -\frac{1}{2} + \left(-\frac{1}{6} + \frac{1}{24}\right)x^2 + \left(-\frac{1}{18} + \frac{1}{72}\right)x^4 + O(x^6) K=12+(424+124)x2+(472+172)x4+O(x6)K = -\frac{1}{2} + \left(-\frac{4}{24} + \frac{1}{24}\right)x^2 + \left(-\frac{4}{72} + \frac{1}{72}\right)x^4 + O(x^6) K=123x2243x472+O(x6)K = -\frac{1}{2} - \frac{3x^2}{24} - \frac{3x^4}{72} + O(x^6) K=12x28x424+O(x6)K = -\frac{1}{2} - \frac{x^2}{8} - \frac{x^4}{24} + O(x^6) Let B=ecsc2x(cosx1)=eKB = e^{\csc^2 x (\cos x -1)} = e^K. B=e1/2x2/8x4/24+O(x6)=e1/2ex2/8x4/24+O(x6)B = e^{-1/2 - x^2/8 - x^4/24 + O(x^6)} = e^{-1/2} e^{-x^2/8 - x^4/24 + O(x^6)} B=e1/2(1+(x28x424)+12!(x28)2+O(x6))B = e^{-1/2} \left(1 + \left(-\frac{x^2}{8} - \frac{x^4}{24}\right) + \frac{1}{2!}\left(-\frac{x^2}{8}\right)^2 + O(x^6)\right) B=e1/2(1x28x424+x4128+O(x6))B = e^{-1/2} \left(1 - \frac{x^2}{8} - \frac{x^4}{24} + \frac{x^4}{128} + O(x^6)\right) B=e1/2(1x28+(124+1128)x4+O(x6))B = e^{-1/2} \left(1 - \frac{x^2}{8} + \left(-\frac{1}{24} + \frac{1}{128}\right)x^4 + O(x^6)\right) B=e1/2(1x2813x4384+O(x6))B = e^{-1/2} \left(1 - \frac{x^2}{8} - \frac{13x^4}{384} + O(x^6)\right)

Now, substitute AA and BB back into the limit expression: L=limx0e1/2(1x245x496)e1/2(1x2813x4384)+O(x6)x2L = \lim_{x \to 0} \frac{e^{-1/2} \left(1 - \frac{x^2}{4} - \frac{5x^4}{96}\right) - e^{-1/2} \left(1 - \frac{x^2}{8} - \frac{13x^4}{384}\right) + O(x^6)}{x^2} L=limx0e1/2[(1x245x496)(1x2813x4384)]+O(x6)x2L = \lim_{x \to 0} \frac{e^{-1/2} \left[\left(1 - \frac{x^2}{4} - \frac{5x^4}{96}\right) - \left(1 - \frac{x^2}{8} - \frac{13x^4}{384}\right)\right] + O(x^6)}{x^2} L=limx0e1/2[x24+x285x496+13x4384]+O(x6)x2L = \lim_{x \to 0} \frac{e^{-1/2} \left[-\frac{x^2}{4} + \frac{x^2}{8} - \frac{5x^4}{96} + \frac{13x^4}{384}\right] + O(x^6)}{x^2} L=limx0e1/2[(28+18)x2+(20384+13384)x4]+O(x6)x2L = \lim_{x \to 0} \frac{e^{-1/2} \left[\left(-\frac{2}{8} + \frac{1}{8}\right)x^2 + \left(-\frac{20}{384} + \frac{13}{384}\right)x^4\right] + O(x^6)}{x^2} L=limx0e1/2[x287x4384]+O(x6)x2L = \lim_{x \to 0} \frac{e^{-1/2} \left[-\frac{x^2}{8} - \frac{7x^4}{384}\right] + O(x^6)}{x^2} Divide by x2x^2: L=limx0e1/2[187x2384]+O(x4)L = \lim_{x \to 0} e^{-1/2} \left[-\frac{1}{8} - \frac{7x^2}{384}\right] + O(x^4) As x0x \to 0, the terms with x2x^2 and higher powers go to zero. L=e1/2(18)=18eL = e^{-1/2} \left(-\frac{1}{8}\right) = -\frac{1}{8\sqrt{e}}

The final answer is 18e\boxed{-\frac{1}{8\sqrt{e}}}.