Solveeit Logo

Question

Question: $$ L = \lim_{x \to 0} \frac{\int_{0}^{\sin^2 x} ln(1+t^3) dt}{\int_{0}^{x} (e^t-1-t)(\tan t - t)(1-\...

L=limx00sin2xln(1+t3)dt0x(et1t)(tantt)(1cost)dtL = \lim_{x \to 0} \frac{\int_{0}^{\sin^2 x} ln(1+t^3) dt}{\int_{0}^{x} (e^t-1-t)(\tan t - t)(1-\cos t) dt}
Answer

24

Explanation

Solution

To solve this limit, we use small-angle approximations and Taylor series expansions.

Numerator Analysis:

For small tt, ln(1+t3)t3\ln(1+t^3) \approx t^3. Also, for small xx, sin2xx2\sin^2 x \approx x^2. Therefore,

0sin2xln(1+t3)dt0x2t3dt=t440x2=(x2)44=x84.\int_{0}^{\sin^2 x} \ln(1+t^3) \, dt \approx \int_0^{x^2} t^3 \, dt = \frac{t^4}{4} \Big|_0^{x^2} = \frac{(x^2)^4}{4} = \frac{x^8}{4}.

Denominator Analysis:

For small tt, we have the following approximations:

et1tt22,tanttt33,1costt22.e^t - 1 - t \approx \frac{t^2}{2}, \quad \tan t - t \approx \frac{t^3}{3}, \quad 1-\cos t \approx \frac{t^2}{2}.

Therefore,

(et1t)(tantt)(1cost)(t22)(t33)(t22)=t712.(e^t-1-t)(\tan t-t)(1-\cos t) \approx \left(\frac{t^2}{2}\right) \left(\frac{t^3}{3}\right) \left(\frac{t^2}{2}\right) = \frac{t^7}{12}.

Thus,

0x(et1t)(tantt)(1cost)dt0xt712dt=t81280x=x896.\int_{0}^{x} (e^t-1-t)(\tan t-t)(1-\cos t) \, dt \approx \int_0^x \frac{t^7}{12} \, dt = \frac{t^8}{12 \cdot 8} \Big|_0^x = \frac{x^8}{96}.

Taking the Limit:

L=limx0x84x896=14196=964=24.L = \lim_{x \to 0} \frac{\frac{x^8}{4}}{\frac{x^8}{96}} = \frac{\frac{1}{4}}{\frac{1}{96}} = \frac{96}{4} = 24.

Therefore, the limit is 24.