Question
Question: $$ L = \lim_{x \to 0} \frac{\int_{0}^{\sin^2 x} ln(1+t^3) dt}{\int_{0}^{x} (e^t-1-t)(\tan t - t)(1-\...
L=x→0lim∫0x(et−1−t)(tant−t)(1−cost)dt∫0sin2xln(1+t3)dt

Answer
24
Explanation
Solution
To solve this limit, we use small-angle approximations and Taylor series expansions.
Numerator Analysis:
For small t, ln(1+t3)≈t3. Also, for small x, sin2x≈x2. Therefore,
∫0sin2xln(1+t3)dt≈∫0x2t3dt=4t40x2=4(x2)4=4x8.Denominator Analysis:
For small t, we have the following approximations:
et−1−t≈2t2,tant−t≈3t3,1−cost≈2t2.Therefore,
(et−1−t)(tant−t)(1−cost)≈(2t2)(3t3)(2t2)=12t7.Thus,
∫0x(et−1−t)(tant−t)(1−cost)dt≈∫0x12t7dt=12⋅8t80x=96x8.Taking the Limit:
L=x→0lim96x84x8=96141=496=24.Therefore, the limit is 24.