Solveeit Logo

Question

Question: An infinitely long insulating cylinder of radius R has a volume charge density that varies with the ...

An infinitely long insulating cylinder of radius R has a volume charge density that varies with the radius as ρ=ρ0(arb)\rho = \rho_0(a-\frac{r}{b}) where ρ0\rho_0, a and b are positive constants and r is the distance from the axis of the cylinder. Use Gauss's Law to determine the magnitude of the electric field at radial distances (a) r<Rr < R (b) r>Rr>R

Answer

For r<Rr < R: E=ρ0r6ϵ0b(3ab2r)E = \frac{\rho_0 r}{6\epsilon_0 b} (3ab - 2r). For r>Rr > R: E=ρ0R26ϵ0br(3ab2R)E = \frac{\rho_0 R^2}{6\epsilon_0 b r} (3ab - 2R).

Explanation

Solution

Due to cylindrical symmetry, we choose a coaxial Gaussian cylinder of radius rr and length LL. Gauss's Law is EdA=Qencϵ0\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\epsilon_0}. The electric flux is Φ=E(2πrL)\Phi = E \cdot (2\pi r L). The volume charge density is ρ(r)=ρ0(ar/b)\rho(r') = \rho_0(a - r'/b).

For r<Rr < R (inside): The enclosed charge is Qenc=0rρ(r)(2πrL)dr=2πρ0L0r(arr2b)dr=2πρ0L(ar22r33b)Q_{enc} = \int_0^r \rho(r') (2\pi r' L) dr' = 2\pi \rho_0 L \int_0^r (ar' - \frac{r'^2}{b}) dr' = 2\pi \rho_0 L (\frac{ar^2}{2} - \frac{r^3}{3b}). Applying Gauss's Law: E(2πrL)=2πρ0Lϵ0(ar22r33b)E \cdot (2\pi r L) = \frac{2\pi \rho_0 L}{\epsilon_0} (\frac{ar^2}{2} - \frac{r^3}{3b}). Solving for EE: E=ρ0ϵ0(ar2r23b)=ρ0r6ϵ0b(3ab2r)E = \frac{\rho_0}{\epsilon_0} (\frac{ar}{2} - \frac{r^2}{3b}) = \frac{\rho_0 r}{6\epsilon_0 b} (3ab - 2r).

For r>Rr > R (outside): The enclosed charge is the total charge within the cylinder of radius RR: Qenc=0Rρ(r)(2πrL)dr=2πρ0L0R(arr2b)dr=2πρ0L(aR22R33b)Q_{enc} = \int_0^R \rho(r') (2\pi r' L) dr' = 2\pi \rho_0 L \int_0^R (ar' - \frac{r'^2}{b}) dr' = 2\pi \rho_0 L (\frac{aR^2}{2} - \frac{R^3}{3b}). Applying Gauss's Law: E(2πrL)=2πρ0Lϵ0(aR22R33b)E \cdot (2\pi r L) = \frac{2\pi \rho_0 L}{\epsilon_0} (\frac{aR^2}{2} - \frac{R^3}{3b}). Solving for EE: E=ρ0ϵ0r(aR22R33b)=ρ0R26ϵ0br(3ab2R)E = \frac{\rho_0}{\epsilon_0 r} (\frac{aR^2}{2} - \frac{R^3}{3b}) = \frac{\rho_0 R^2}{6\epsilon_0 b r} (3ab - 2R).