Solveeit Logo

Question

Question: If \(y = \log \tan \left( \frac{x}{2} \right) + \sin^{-1} (\cos x)\), then \(\frac{dy}{dx} =\)...

If y=logtan(x2)+sin1(cosx)y = \log \tan \left( \frac{x}{2} \right) + \sin^{-1} (\cos x), then dydx=\frac{dy}{dx} =

A

sinx+1\sin x + 1

B

xx

C

cscx1\csc x - 1

D

cscx\csc x

Answer

cscx1\csc x - 1

Explanation

Solution

Step 1:
Differentiate lntanx2\ln\tan\frac{x}{2}:

ddx[lntanx2]=1tanx2sec2x212=sec2x22tanx2=12sinx2cosx2=1sinx=cscx.\frac{d}{dx}\bigl[\ln\tan\frac{x}{2}\bigr] = \frac{1}{\tan\frac{x}{2}}\cdot\sec^2\frac{x}{2}\cdot\frac12 = \frac{\sec^2\frac{x}{2}}{2\tan\frac{x}{2}} = \frac{1}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \frac{1}{\sin x} = \csc x.

Step 2:
Differentiate sin1(cosx)\sin^{-1}(\cos x): let u=cosxu=\cos x. Then

ddx[sin1(u)]=u1u2=sinx1cos2x=sinxsinx.\frac{d}{dx}[\sin^{-1}(u)] = \frac{u'}{\sqrt{1-u^2}} = \frac{-\sin x}{\sqrt{1-\cos^2 x}} = \frac{-\sin x}{|\sin x|}.

For 0<x<π0<x<\pi, sinx>0\sin x>0, so this becomes 1-1.

Combine:

dydx=cscx+(1)=cscx1.\frac{dy}{dx} = \csc x + (-1) = \csc x - 1.