Question
Question: If $\alpha, \beta, \gamma \in R$, PT (i) $Sin\alpha + Sin\beta + Sin\gamma - Sin(\alpha + \beta + \...
If α,β,γ∈R, PT
(i) Sinα+Sinβ+Sinγ−Sin(α+β+γ)=4Sin(2α+β)Cos(2β+γ)×Cos(2α+γ)
(ii) Cosα+Cosβ+Cosγ−Cos(α+β+γ)=4Cos(2α+β)Cos(2β+γ)Cos(2α+γ)

The identities as stated in the question are incorrect. The correct identities are:
(i) Sinα+Sinβ+Sinγ−Sin(α+β+γ)=4Sin(2α+β)Sin(2β+γ)Sin(2α+γ)
(ii) Cosα+Cosβ+Cosγ+Cos(α+β+γ)=4Cos(2α+β)Cos(2β+γ)Cos(2α+γ)
Solution
The given identities are incorrect. The correct identities are:
(i) Sinα+Sinβ+Sinγ−Sin(α+β+γ)=4Sin(2α+β)Sin(2β+γ)Sin(2α+γ)
(ii) Cosα+Cosβ+Cosγ+Cos(α+β+γ)=4Cos(2α+β)Cos(2β+γ)Cos(2α+γ)
Proof for (i):
Starting with the left-hand side (LHS):
LHS=Sinα+Sinβ+Sinγ−Sin(α+β+γ)
Using the sum-to-product formula, SinX+SinY=2Sin(2X+Y)Cos(2X−Y):
Sinα+Sinβ=2Sin(2α+β)Cos(2α−β)
Using the difference-to-product formula, SinX−SinY=2Cos(2X+Y)Sin(2X−Y):
Sinγ−Sin(α+β+γ)=2Cos(2γ+α+β+γ)Sin(2γ−(α+β+γ)) =2Cos(2α+β+2γ)Sin(2−α−β) =−2Cos(2α+β+2γ)Sin(2α+β)
Combining these:
LHS=2Sin(2α+β)Cos(2α−β)−2Cos(2α+β+2γ)Sin(2α+β) =2Sin(2α+β)[Cos(2α−β)−Cos(2α+β+2γ)]
Using the difference of cosines formula, CosX−CosY=−2Sin(2X+Y)Sin(2X−Y):
Cos(2α−β)−Cos(2α+β+2γ)=−2Sin(4α−β+α+β+2γ)Sin(4α−β−α−β−2γ) =−2Sin(42α+2γ)Sin(4−2β−2γ) =2Sin(2α+γ)Sin(2β+γ)
Substituting back:
LHS=2Sin(2α+β)[2Sin(2α+γ)Sin(2β+γ)] LHS=4Sin(2α+β)Sin(2β+γ)Sin(2α+γ)
Proof for (ii):
Starting with the right-hand side (RHS):
RHS=4Cos(2α+β)Cos(2β+γ)Cos(2α+γ)
Using the product-to-sum formula, 2CosACosB=Cos(A+B)+Cos(A−B):
RHS=2Cos(2α+β)[Cos(2β+γ+α+γ)+Cos(2β+γ−α−γ)] =2Cos(2α+β)[Cos(2α+β+2γ)+Cos(2β−α)] =2Cos(2α+β)[Cos(2α+β+2γ)+Cos(2α−β)]
Expanding further:
RHS=Cos(2α+β+α+β+2γ)+Cos(2α+β−α−β−2γ)+Cos(2α+β+α−β)+Cos(2α+β−α+β) =Cos(α+β+γ)+Cos(−γ)+Cos(α)+Cos(β) =Cos(α+β+γ)+Cos(γ)+Cos(α)+Cos(β) =Cosα+Cosβ+Cosγ+Cos(α+β+γ)
Thus, the corrected identities are proven.