Solveeit Logo

Question

Question: If $\alpha, \beta, \gamma \in R$, PT (i) $Sin\alpha + Sin\beta + Sin\gamma - Sin(\alpha + \beta + \...

If α,β,γR\alpha, \beta, \gamma \in R, PT

(i) Sinα+Sinβ+SinγSin(α+β+γ)=4Sin(α+β2)Cos(β+γ2)×Cos(α+γ2)Sin\alpha + Sin\beta + Sin\gamma - Sin(\alpha + \beta + \gamma) = 4 Sin(\frac{\alpha + \beta}{2})Cos(\frac{\beta + \gamma}{2}) \times Cos(\frac{\alpha + \gamma}{2})

(ii) Cosα+Cosβ+CosγCos(α+β+γ)=4Cos(α+β2)Cos(β+γ2)Cos(α+γ2)Cos\alpha + Cos\beta + Cos\gamma - Cos(\alpha + \beta + \gamma) = 4 Cos(\frac{\alpha + \beta}{2})Cos(\frac{\beta + \gamma}{2})Cos(\frac{\alpha + \gamma}{2})

Answer

The identities as stated in the question are incorrect. The correct identities are:

(i) Sinα+Sinβ+SinγSin(α+β+γ)=4Sin(α+β2)Sin(β+γ2)Sin(α+γ2)Sin\alpha + Sin\beta + Sin\gamma - Sin(\alpha + \beta + \gamma) = 4 Sin(\frac{\alpha + \beta}{2})Sin(\frac{\beta + \gamma}{2})Sin(\frac{\alpha + \gamma}{2})

(ii) Cosα+Cosβ+Cosγ+Cos(α+β+γ)=4Cos(α+β2)Cos(β+γ2)Cos(α+γ2)Cos\alpha + Cos\beta + Cos\gamma + Cos(\alpha + \beta + \gamma) = 4 Cos(\frac{\alpha + \beta}{2})Cos(\frac{\beta + \gamma}{2})Cos(\frac{\alpha + \gamma}{2})

Explanation

Solution

The given identities are incorrect. The correct identities are:

(i) Sinα+Sinβ+SinγSin(α+β+γ)=4Sin(α+β2)Sin(β+γ2)Sin(α+γ2)Sin\alpha + Sin\beta + Sin\gamma - Sin(\alpha + \beta + \gamma) = 4 Sin(\frac{\alpha + \beta}{2})Sin(\frac{\beta + \gamma}{2})Sin(\frac{\alpha + \gamma}{2})

(ii) Cosα+Cosβ+Cosγ+Cos(α+β+γ)=4Cos(α+β2)Cos(β+γ2)Cos(α+γ2)Cos\alpha + Cos\beta + Cos\gamma + Cos(\alpha + \beta + \gamma) = 4 Cos(\frac{\alpha + \beta}{2})Cos(\frac{\beta + \gamma}{2})Cos(\frac{\alpha + \gamma}{2})

Proof for (i):

Starting with the left-hand side (LHS):

LHS=Sinα+Sinβ+SinγSin(α+β+γ)LHS = Sin\alpha + Sin\beta + Sin\gamma - Sin(\alpha + \beta + \gamma)

Using the sum-to-product formula, SinX+SinY=2Sin(X+Y2)Cos(XY2)SinX + SinY = 2Sin(\frac{X+Y}{2})Cos(\frac{X-Y}{2}):

Sinα+Sinβ=2Sin(α+β2)Cos(αβ2)Sin\alpha + Sin\beta = 2Sin(\frac{\alpha + \beta}{2})Cos(\frac{\alpha - \beta}{2})

Using the difference-to-product formula, SinXSinY=2Cos(X+Y2)Sin(XY2)SinX - SinY = 2Cos(\frac{X+Y}{2})Sin(\frac{X-Y}{2}):

SinγSin(α+β+γ)=2Cos(γ+α+β+γ2)Sin(γ(α+β+γ)2)Sin\gamma - Sin(\alpha + \beta + \gamma) = 2Cos(\frac{\gamma + \alpha + \beta + \gamma}{2})Sin(\frac{\gamma - (\alpha + \beta + \gamma)}{2}) =2Cos(α+β+2γ2)Sin(αβ2)= 2Cos(\frac{\alpha + \beta + 2\gamma}{2})Sin(\frac{-\alpha - \beta}{2}) =2Cos(α+β+2γ2)Sin(α+β2)= -2Cos(\frac{\alpha + \beta + 2\gamma}{2})Sin(\frac{\alpha + \beta}{2})

Combining these:

LHS=2Sin(α+β2)Cos(αβ2)2Cos(α+β+2γ2)Sin(α+β2)LHS = 2Sin(\frac{\alpha + \beta}{2})Cos(\frac{\alpha - \beta}{2}) - 2Cos(\frac{\alpha + \beta + 2\gamma}{2})Sin(\frac{\alpha + \beta}{2}) =2Sin(α+β2)[Cos(αβ2)Cos(α+β+2γ2)]= 2Sin(\frac{\alpha + \beta}{2})[Cos(\frac{\alpha - \beta}{2}) - Cos(\frac{\alpha + \beta + 2\gamma}{2})]

Using the difference of cosines formula, CosXCosY=2Sin(X+Y2)Sin(XY2)CosX - CosY = -2Sin(\frac{X+Y}{2})Sin(\frac{X-Y}{2}):

Cos(αβ2)Cos(α+β+2γ2)=2Sin(αβ+α+β+2γ4)Sin(αβαβ2γ4)Cos(\frac{\alpha - \beta}{2}) - Cos(\frac{\alpha + \beta + 2\gamma}{2}) = -2Sin(\frac{\alpha - \beta + \alpha + \beta + 2\gamma}{4})Sin(\frac{\alpha - \beta - \alpha - \beta - 2\gamma}{4}) =2Sin(2α+2γ4)Sin(2β2γ4)= -2Sin(\frac{2\alpha + 2\gamma}{4})Sin(\frac{-2\beta - 2\gamma}{4}) =2Sin(α+γ2)Sin(β+γ2)= 2Sin(\frac{\alpha + \gamma}{2})Sin(\frac{\beta + \gamma}{2})

Substituting back:

LHS=2Sin(α+β2)[2Sin(α+γ2)Sin(β+γ2)]LHS = 2Sin(\frac{\alpha + \beta}{2})[2Sin(\frac{\alpha + \gamma}{2})Sin(\frac{\beta + \gamma}{2})] LHS=4Sin(α+β2)Sin(β+γ2)Sin(α+γ2)LHS = 4Sin(\frac{\alpha + \beta}{2})Sin(\frac{\beta + \gamma}{2})Sin(\frac{\alpha + \gamma}{2})

Proof for (ii):

Starting with the right-hand side (RHS):

RHS=4Cos(α+β2)Cos(β+γ2)Cos(α+γ2)RHS = 4 Cos(\frac{\alpha + \beta}{2})Cos(\frac{\beta + \gamma}{2})Cos(\frac{\alpha + \gamma}{2})

Using the product-to-sum formula, 2CosACosB=Cos(A+B)+Cos(AB)2CosA CosB = Cos(A+B) + Cos(A-B):

RHS=2Cos(α+β2)[Cos(β+γ+α+γ2)+Cos(β+γαγ2)]RHS = 2Cos(\frac{\alpha + \beta}{2})[Cos(\frac{\beta + \gamma + \alpha + \gamma}{2}) + Cos(\frac{\beta + \gamma - \alpha - \gamma}{2})] =2Cos(α+β2)[Cos(α+β+2γ2)+Cos(βα2)]= 2Cos(\frac{\alpha + \beta}{2})[Cos(\frac{\alpha + \beta + 2\gamma}{2}) + Cos(\frac{\beta - \alpha}{2})] =2Cos(α+β2)[Cos(α+β+2γ2)+Cos(αβ2)]= 2Cos(\frac{\alpha + \beta}{2})[Cos(\frac{\alpha + \beta + 2\gamma}{2}) + Cos(\frac{\alpha - \beta}{2})]

Expanding further:

RHS=Cos(α+β+α+β+2γ2)+Cos(α+βαβ2γ2)+Cos(α+β+αβ2)+Cos(α+βα+β2)RHS = Cos(\frac{\alpha + \beta + \alpha + \beta + 2\gamma}{2}) + Cos(\frac{\alpha + \beta - \alpha - \beta - 2\gamma}{2}) + Cos(\frac{\alpha + \beta + \alpha - \beta}{2}) + Cos(\frac{\alpha + \beta - \alpha + \beta}{2}) =Cos(α+β+γ)+Cos(γ)+Cos(α)+Cos(β)= Cos(\alpha + \beta + \gamma) + Cos(-\gamma) + Cos(\alpha) + Cos(\beta) =Cos(α+β+γ)+Cos(γ)+Cos(α)+Cos(β)= Cos(\alpha + \beta + \gamma) + Cos(\gamma) + Cos(\alpha) + Cos(\beta) =Cosα+Cosβ+Cosγ+Cos(α+β+γ)= Cos\alpha + Cos\beta + Cos\gamma + Cos(\alpha + \beta + \gamma)

Thus, the corrected identities are proven.