Solveeit Logo

Question

Question: \) $I = \frac{x^4}{3\sqrt{x}}$...

) I=x43xI = \frac{x^4}{3\sqrt{x}}

Answer

227x9/2+C\frac{2}{27} x^{9/2} + C

Explanation

Solution

Let the given integral be II.

I=x43xdxI = \int \frac{x^4}{3\sqrt{x}} dx

First, simplify the integrand.

x43x=x43x1/2\frac{x^4}{3\sqrt{x}} = \frac{x^4}{3x^{1/2}}

Using the rule am/an=amna^m / a^n = a^{m-n}, we get:

x43x1/2=13x41/2=13x8/21/2=13x7/2\frac{x^4}{3x^{1/2}} = \frac{1}{3} x^{4 - 1/2} = \frac{1}{3} x^{8/2 - 1/2} = \frac{1}{3} x^{7/2}

Now, the integral becomes:

I=13x7/2dxI = \int \frac{1}{3} x^{7/2} dx

We can pull the constant 13\frac{1}{3} out of the integral:

I=13x7/2dxI = \frac{1}{3} \int x^{7/2} dx

Using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (where n1n \neq -1), with n=72n = \frac{7}{2}:

x7/2dx=x7/2+17/2+1+C\int x^{7/2} dx = \frac{x^{7/2 + 1}}{7/2 + 1} + C

x7/2dx=x9/29/2+C\int x^{7/2} dx = \frac{x^{9/2}}{9/2} + C

Now, substitute this back into the expression for II:

I=13(x9/29/2)+CI = \frac{1}{3} \left( \frac{x^{9/2}}{9/2} \right) + C

I=1329x9/2+CI = \frac{1}{3} \cdot \frac{2}{9} x^{9/2} + C

I=227x9/2+CI = \frac{2}{27} x^{9/2} + C

Explanation of the solution:

The integral is x43xdx\int \frac{x^4}{3\sqrt{x}} dx.

Rewrite the integrand as 13x4x1/2=13x41/2=13x7/2\frac{1}{3} \frac{x^4}{x^{1/2}} = \frac{1}{3} x^{4 - 1/2} = \frac{1}{3} x^{7/2}.

The integral becomes 13x7/2dx\int \frac{1}{3} x^{7/2} dx.

Pull the constant out: 13x7/2dx\frac{1}{3} \int x^{7/2} dx.

Apply the power rule for integration xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C with n=7/2n = 7/2.

x7/2dx=x7/2+17/2+1+C=x9/29/2+C\int x^{7/2} dx = \frac{x^{7/2+1}}{7/2+1} + C = \frac{x^{9/2}}{9/2} + C.

Multiply by the constant 13\frac{1}{3}: 13(x9/29/2)+C=1329x9/2+C=227x9/2+C\frac{1}{3} \left(\frac{x^{9/2}}{9/2}\right) + C = \frac{1}{3} \cdot \frac{2}{9} x^{9/2} + C = \frac{2}{27} x^{9/2} + C.