Question
Question: $$ f(x) = \begin{cases} x.\frac{\ln(1+x)+\ln(1-x)}{\sec x - \cos x}, & x \in (-1,0) \\ (k^2 - 3k - ...
Let k1 & k2 be two values of k for which is differentiable at x = 0, then the value of (k12+k22−3) is equal to

6
Solution
The function is given by:
f(x)={x.secx−cosxln(1+x)+ln(1−x),(k2−3k−1)sinx+x2,x∈(−1,0)x∈[0,∞)For f(x) to be differentiable at x=0, it must first be continuous at x=0.
Step 1: Check for continuity at x=0.
For continuity at x=0, we need limx→0−f(x)=limx→0+f(x)=f(0).
f(0)=(k2−3k−1)sin(0)+02=0.
limx→0+f(x)=limx→0+[(k2−3k−1)sinx+x2]=(k2−3k−1)sin(0)+02=0.
limx→0−f(x)=limx→0−x.secx−cosxln(1+x)+ln(1−x).
Using ln(1+x)+ln(1−x)=ln((1+x)(1−x))=ln(1−x2) and secx−cosx=cosx1−cosx=cosx1−cos2x=cosxsin2x.
The expression becomes limx→0−x⋅cosxsin2xln(1−x2)=limx→0−sin2xxln(1−x2)cosx.
We can rewrite this using standard limits limu→0uln(1+u)=1 and limv→0vsinv=1:
limx→0−−x2ln(1−x2)⋅sin2x−x2⋅xcosx=limx→0−−x2ln(1+(−x2))⋅(sinxx)2⋅(−xcosx).
As x→0, −x2ln(1+(−x2))→1, sinxx→1, and −xcosx→0.
So, limx→0−f(x)=1⋅12⋅0=0.
Since limx→0−f(x)=limx→0+f(x)=f(0)=0, the function is continuous at x=0 for all values of k.
Step 2: Check for differentiability at x=0.
For differentiability at x=0, the left-hand derivative f′(0−) must be equal to the right-hand derivative f′(0+).
f′(0+)=limh→0+hf(0+h)−f(0)=limh→0+h(k2−3k−1)sinh+h2−0
=limh→0+((k2−3k−1)hsinh+h)=(k2−3k−1)⋅1+0=k2−3k−1.
f′(0−)=limh→0−hf(0+h)−f(0)=limh→0−hhsech−coshln(1+h)+ln(1−h)
=limh→0−sech−coshln(1+h)+ln(1−h)=limh→0−coshsin2hln(1−h2)=limh→0−sin2hln(1−h2)cosh.
We can evaluate this limit using Taylor series expansions around h=0:
ln(1−h2)=−h2−2(−h2)2−⋯=−h2−2h4−…
cosh=1−2!h2+…
sinh=h−3!h3+⋯⟹sin2h=(h−6h3+…)2=h2−3h4+…
So, f′(0−)=limh→0−(h2−3h4+…)(−h2−2h4−…)(1−2h2+…)=limh→0−h2(1−3h2+…)−h2(1+2h2+…)(1−2h2+…)
=limh→0−1−3h2+…−(1+O(h2))=1−1=−1.
Alternatively, using L'Hopital's Rule on limh→0sin2hln(1−h2)cosh:
Let L=limh→0sin2hln(1−h2)cosh. This is of the form 00.
Using L'Hopital's rule:
Numerator derivative: 1−h2−2hcosh+ln(1−h2)(−sinh).
Denominator derivative: 2sinhcosh=sin(2h).
L=limh→0sin(2h)1−h2−2hcosh−ln(1−h2)sinh. This is still 00.
Using L'Hopital's rule again:
Numerator second derivative (evaluated at h=0):
Derivative of 1−h2−2hcosh: (1−h2)2(−2cosh+2hsinh)(1−h2)−(−2hcosh)(−2h). At h=0, this is 12(−2)(1)−0=−2.
Derivative of −ln(1−h2)sinh: −[1−h2−2hsinh+ln(1−h2)cosh]. At h=0, this is −[0+0]=0.
So, the second derivative of the numerator at h=0 is −2+0=−2.
Second derivative of denominator sin(2h): 2cos(2h). At h=0, this is 2cos(0)=2.
So, L=2−2=−1.
Thus, f′(0−)=−1.
For differentiability at x=0, we must have f′(0+)=f′(0−):
k2−3k−1=−1.
k2−3k=0.
k(k−3)=0.
The two values of k for which the function is differentiable at x=0 are k1=0 and k2=3.
We are asked to find the value of (k12+k22−3).
(02+32−3)=(0+9−3)=6.
The final answer is 6.