Solveeit Logo

Question

Question: $$ f(x) = \begin{cases} x.\frac{\ln(1+x)+\ln(1-x)}{\sec x - \cos x}, & x \in (-1,0) \\ (k^2 - 3k - ...

f(x)={x.ln(1+x)+ln(1x)secxcosx,x(1,0)(k23k1)sinx+x2,x[0,)f(x) = \begin{cases} x.\frac{\ln(1+x)+\ln(1-x)}{\sec x - \cos x}, & x \in (-1,0) \\ (k^2 - 3k - 1)\sin x + x^2, & x \in [0, \infty) \end{cases}

Let k1k_1 & k2k_2 be two values of k for which is differentiable at x = 0, then the value of (k12+k223)(k_1^2 + k_2^2 - 3) is equal to

Answer

6

Explanation

Solution

The function is given by:

f(x)={x.ln(1+x)+ln(1x)secxcosx,x(1,0)(k23k1)sinx+x2,x[0,)f(x) = \begin{cases} x.\frac{\ln(1+x)+\ln(1-x)}{\sec x - \cos x}, & x \in (-1,0) \\ (k^2 - 3k - 1)\sin x + x^2, & x \in [0, \infty) \end{cases}

For f(x)f(x) to be differentiable at x=0x=0, it must first be continuous at x=0x=0.

Step 1: Check for continuity at x=0x=0.

For continuity at x=0x=0, we need limx0f(x)=limx0+f(x)=f(0)\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0).

f(0)=(k23k1)sin(0)+02=0f(0) = (k^2 - 3k - 1)\sin(0) + 0^2 = 0.

limx0+f(x)=limx0+[(k23k1)sinx+x2]=(k23k1)sin(0)+02=0\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} [(k^2 - 3k - 1)\sin x + x^2] = (k^2 - 3k - 1)\sin(0) + 0^2 = 0.

limx0f(x)=limx0x.ln(1+x)+ln(1x)secxcosx\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x.\frac{\ln(1+x)+\ln(1-x)}{\sec x - \cos x}.

Using ln(1+x)+ln(1x)=ln((1+x)(1x))=ln(1x2)\ln(1+x)+\ln(1-x) = \ln((1+x)(1-x)) = \ln(1-x^2) and secxcosx=1cosxcosx=1cos2xcosx=sin2xcosx\sec x - \cos x = \frac{1}{\cos x} - \cos x = \frac{1-\cos^2 x}{\cos x} = \frac{\sin^2 x}{\cos x}.

The expression becomes limx0xln(1x2)sin2xcosx=limx0xln(1x2)cosxsin2x\lim_{x \to 0^-} x \cdot \frac{\ln(1-x^2)}{\frac{\sin^2 x}{\cos x}} = \lim_{x \to 0^-} \frac{x \ln(1-x^2) \cos x}{\sin^2 x}.

We can rewrite this using standard limits limu0ln(1+u)u=1\lim_{u \to 0} \frac{\ln(1+u)}{u} = 1 and limv0sinvv=1\lim_{v \to 0} \frac{\sin v}{v} = 1:

limx0ln(1x2)x2x2sin2xxcosx=limx0ln(1+(x2))x2(xsinx)2(xcosx)\lim_{x \to 0^-} \frac{\ln(1-x^2)}{-x^2} \cdot \frac{-x^2}{\sin^2 x} \cdot x \cos x = \lim_{x \to 0^-} \frac{\ln(1+(-x^2))}{-x^2} \cdot \left(\frac{x}{\sin x}\right)^2 \cdot (-x \cos x).

As x0x \to 0, ln(1+(x2))x21\frac{\ln(1+(-x^2))}{-x^2} \to 1, xsinx1\frac{x}{\sin x} \to 1, and xcosx0-x \cos x \to 0.

So, limx0f(x)=1120=0\lim_{x \to 0^-} f(x) = 1 \cdot 1^2 \cdot 0 = 0.

Since limx0f(x)=limx0+f(x)=f(0)=0\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) = 0, the function is continuous at x=0x=0 for all values of kk.

Step 2: Check for differentiability at x=0x=0.

For differentiability at x=0x=0, the left-hand derivative f(0)f'(0^-) must be equal to the right-hand derivative f(0+)f'(0^+).

f(0+)=limh0+f(0+h)f(0)h=limh0+(k23k1)sinh+h20hf'(0^+) = \lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{(k^2 - 3k - 1)\sin h + h^2 - 0}{h}

=limh0+((k23k1)sinhh+h)=(k23k1)1+0=k23k1= \lim_{h \to 0^+} \left( (k^2 - 3k - 1)\frac{\sin h}{h} + h \right) = (k^2 - 3k - 1) \cdot 1 + 0 = k^2 - 3k - 1.

f(0)=limh0f(0+h)f(0)h=limh0hln(1+h)+ln(1h)sechcoshhf'(0^-) = \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{h \frac{\ln(1+h)+\ln(1-h)}{\sec h - \cos h}}{h}

=limh0ln(1+h)+ln(1h)sechcosh=limh0ln(1h2)sin2hcosh=limh0ln(1h2)coshsin2h= \lim_{h \to 0^-} \frac{\ln(1+h)+\ln(1-h)}{\sec h - \cos h} = \lim_{h \to 0^-} \frac{\ln(1-h^2)}{\frac{\sin^2 h}{\cos h}} = \lim_{h \to 0^-} \frac{\ln(1-h^2) \cos h}{\sin^2 h}.

We can evaluate this limit using Taylor series expansions around h=0h=0:

ln(1h2)=h2(h2)22=h2h42\ln(1-h^2) = -h^2 - \frac{(-h^2)^2}{2} - \dots = -h^2 - \frac{h^4}{2} - \dots

cosh=1h22!+\cos h = 1 - \frac{h^2}{2!} + \dots

sinh=hh33!+    sin2h=(hh36+)2=h2h43+\sin h = h - \frac{h^3}{3!} + \dots \implies \sin^2 h = (h - \frac{h^3}{6} + \dots)^2 = h^2 - \frac{h^4}{3} + \dots

So, f(0)=limh0(h2h42)(1h22+)(h2h43+)=limh0h2(1+h22+)(1h22+)h2(1h23+)f'(0^-) = \lim_{h \to 0^-} \frac{(-h^2 - \frac{h^4}{2} - \dots)(1 - \frac{h^2}{2} + \dots)}{(h^2 - \frac{h^4}{3} + \dots)} = \lim_{h \to 0^-} \frac{-h^2(1 + \frac{h^2}{2} + \dots)(1 - \frac{h^2}{2} + \dots)}{h^2(1 - \frac{h^2}{3} + \dots)}

=limh0(1+O(h2))1h23+=11=1= \lim_{h \to 0^-} \frac{-(1 + O(h^2))}{1 - \frac{h^2}{3} + \dots} = \frac{-1}{1} = -1.

Alternatively, using L'Hopital's Rule on limh0ln(1h2)coshsin2h\lim_{h \to 0} \frac{\ln(1-h^2) \cos h}{\sin^2 h}:

Let L=limh0ln(1h2)coshsin2hL = \lim_{h \to 0} \frac{\ln(1-h^2) \cos h}{\sin^2 h}. This is of the form 00\frac{0}{0}.

Using L'Hopital's rule:

Numerator derivative: 2h1h2cosh+ln(1h2)(sinh)\frac{-2h}{1-h^2} \cos h + \ln(1-h^2)(-\sin h).

Denominator derivative: 2sinhcosh=sin(2h)2 \sin h \cos h = \sin(2h).

L=limh02hcosh1h2ln(1h2)sinhsin(2h)L = \lim_{h \to 0} \frac{\frac{-2h \cos h}{1-h^2} - \ln(1-h^2)\sin h}{\sin(2h)}. This is still 00\frac{0}{0}.

Using L'Hopital's rule again:

Numerator second derivative (evaluated at h=0h=0):

Derivative of 2hcosh1h2\frac{-2h \cos h}{1-h^2}: (2cosh+2hsinh)(1h2)(2hcosh)(2h)(1h2)2\frac{(-2 \cos h + 2h \sin h)(1-h^2) - (-2h \cos h)(-2h)}{(1-h^2)^2}. At h=0h=0, this is (2)(1)012=2\frac{(-2)(1) - 0}{1^2} = -2.

Derivative of ln(1h2)sinh-\ln(1-h^2)\sin h: [2h1h2sinh+ln(1h2)cosh]-[\frac{-2h}{1-h^2}\sin h + \ln(1-h^2)\cos h]. At h=0h=0, this is [0+0]=0-[0 + 0] = 0.

So, the second derivative of the numerator at h=0h=0 is 2+0=2-2 + 0 = -2.

Second derivative of denominator sin(2h)\sin(2h): 2cos(2h)2 \cos(2h). At h=0h=0, this is 2cos(0)=22 \cos(0) = 2.

So, L=22=1L = \frac{-2}{2} = -1.

Thus, f(0)=1f'(0^-) = -1.

For differentiability at x=0x=0, we must have f(0+)=f(0)f'(0^+) = f'(0^-):

k23k1=1k^2 - 3k - 1 = -1.

k23k=0k^2 - 3k = 0.

k(k3)=0k(k - 3) = 0.

The two values of kk for which the function is differentiable at x=0x=0 are k1=0k_1 = 0 and k2=3k_2 = 3.

We are asked to find the value of (k12+k223)(k_1^2 + k_2^2 - 3).

(02+323)=(0+93)=6(0^2 + 3^2 - 3) = (0 + 9 - 3) = 6.

The final answer is 6\boxed{6}.