Solveeit Logo

Question

Question: $\frac{2x}{x^2+5x+2} \geq \frac{1}{x+1}$...

2xx2+5x+21x+1\frac{2x}{x^2+5x+2} \geq \frac{1}{x+1}

Answer

x(5172,1)[3172,5+172)[3+172,)x\in\left(\frac{-5-\sqrt{17}}{2},\,-1\right)\cup\left[\frac{3-\sqrt{17}}{2},\,\frac{-5+\sqrt{17}}{2}\right)\cup\left[\frac{3+\sqrt{17}}{2},\,\infty\right)

Explanation

Solution

We wish to solve

2xx2+5x+21x+1.\frac{2x}{x^2+5x+2} \ge \frac{1}{x+1}.

Step 1. Bring all terms to one side

2xx2+5x+21x+10.\frac{2x}{x^2+5x+2} - \frac{1}{x+1} \ge 0.

Step 2. Write as a single rational expression

The common denominator is (x2+5x+2)(x+1)(x^2+5x+2)(x+1) (note that x+10x+1\ne0 and x2+5x+20x^2+5x+2\ne0). Thus,

2x(x+1)(x2+5x+2)(x2+5x+2)(x+1)0.\frac{2x(x+1) - (x^2+5x+2)}{(x^2+5x+2)(x+1)} \ge 0.

Simplify the numerator:

2x(x+1)(x2+5x+2)=2x2+2xx25x2=x23x2.2x(x+1) - (x^2+5x+2)= 2x^2+2x -x^2-5x-2 = x^2-3x-2.

So the inequality becomes

x23x2(x2+5x+2)(x+1)0.\frac{x^2-3x-2}{(x^2+5x+2)(x+1)} \ge 0.

Step 3. Find the critical points

  1. Zeros of the numerator: Solve

    x23x2=0x=3±9+82=3±172.x^2-3x-2=0\quad\Longrightarrow\quad x=\frac{3\pm\sqrt{9+8}}{2}=\frac{3\pm\sqrt{17}}{2}.

    Let

    r1=3172andr2=3+172.r_1=\frac{3-\sqrt{17}}{2}\quad \text{and}\quad r_2=\frac{3+\sqrt{17}}{2}.

    Numerically, r10.56r_1\approx -0.56 and r23.56r_2\approx 3.56.

  2. Zeros of the factor x+1x+1: x=1x=-1.

  3. Zeros of x2+5x+2x^2+5x+2: Solve

    x2+5x+2=0x=5±2582=5±172.x^2+5x+2=0\quad\Longrightarrow\quad x=\frac{-5\pm\sqrt{25-8}}{2} = \frac{-5\pm\sqrt{17}}{2}.

    Let

    p1=51724.56,p2=5+1720.44.p_1=\frac{-5-\sqrt{17}}{2}\approx -4.56,\quad p_2=\frac{-5+\sqrt{17}}{2}\approx -0.44.

Remember that the expression is undefined when the denominator is zero, i.e. at x=1x=-1, x=p1x=p_1 and x=p2x=p_2.

Step 4. Determine the sign in the various intervals

The critical points (in increasing order) are:

p14.56,1,r10.56,p20.44,r23.56.p_1\approx -4.56,\quad -1,\quad r_1\approx -0.56,\quad p_2\approx -0.44,\quad r_2\approx 3.56.

Thus, the real line is divided into these intervals:

  1. x<p1x<p_1
  2. (p1,1)(p_1, -1)
  3. (1,r1)(-1, r_1)
  4. (r1,p2)(r_1, p_2)
  5. (p2,r2)(p_2, r_2)
  6. x>r2x>r_2

Using test points in each interval (details omitted for brevity), one finds that the expression is nonnegative (i.e. positive or 0) in the intervals:

  • (p1,1)(p_1, -1)
  • (r1,p2)(r_1, p_2) (note that at x=r1x=r_1 the numerator is zero and it is allowed provided the denominator is nonzero)
  • (r2,)(r_2, \infty) (with equality at x=r2x=r_2).

Step 5. Write the final answer, taking care to exclude points where the denominator is 0

Thus the solution set is:

x\in\left(\frac{-5-\sqrt{17}}{2},\,-1\right)\cup\left[\frac{3-\sqrt{17}}{2},\,\frac{-5+\sqrt{17}}{2}\right)\cup\left[\frac{3+\sqrt{17}}{2},\,\infty\right) $$. **Summary** - **Core Explanation:** 1. Bring all terms to one side. 2. Combine into a single rational expression. 3. Find zeros of the numerator and denominator. 4. Use a sign chart to find intervals where the expression is nonnegative. 5. Exclude values that make the denominator 0. - **Final Answer:** $$ x\in\left(\frac{-5-\sqrt{17}}{2},\,-1\right)\cup\left[\frac{3-\sqrt{17}}{2},\,\frac{-5+\sqrt{17}}{2}\right)\cup\left[\frac{3+\sqrt{17}}{2},\,\infty\right) $$