Solveeit Logo

Question

Question: $$-\frac{1}{3} \leq |3x-4| \leq 2$$...

133x42-\frac{1}{3} \leq |3x-4| \leq 2

Answer

23x2\frac{2}{3} \leq x \leq 2

Explanation

Solution

The inequality 133x42-\frac{1}{3} \leq |3x-4| \leq 2 implies two conditions:

  1. 3x413|3x-4| \geq -\frac{1}{3}: This is true for all xRx \in \mathbb{R} since 3x40|3x-4| \geq 0.
  2. 3x42|3x-4| \leq 2: This is equivalent to 23x42-2 \leq 3x-4 \leq 2. Adding 4 to all parts gives 23x62 \leq 3x \leq 6. Dividing by 3 yields 23x2\frac{2}{3} \leq x \leq 2. The solution is the intersection of these conditions, which is 23x2\frac{2}{3} \leq x \leq 2.