Solveeit Logo

Question

Question: Find the vertex of Parabola $y=3x^2-7x+4$...

Find the vertex of Parabola y=3x27x+4y=3x^2-7x+4

Answer

The vertex is (76,112)\left(\frac{7}{6}, -\frac{1}{12}\right).

Explanation

Solution

The x-coordinate of the vertex is given by xv=b2ax_v = \frac{-b}{2a}. For y=3x27x+4y = 3x^2 - 7x + 4, a=3a=3 and b=7b=-7. So, xv=(7)2(3)=76x_v = \frac{-(-7)}{2(3)} = \frac{7}{6}. Substituting xvx_v into the equation: yv=3(76)27(76)+4=3(4936)496+4=49129812+4812=112y_v = 3\left(\frac{7}{6}\right)^2 - 7\left(\frac{7}{6}\right) + 4 = 3\left(\frac{49}{36}\right) - \frac{49}{6} + 4 = \frac{49}{12} - \frac{98}{12} + \frac{48}{12} = -\frac{1}{12}. The vertex is (76,112)\left(\frac{7}{6}, -\frac{1}{12}\right).