Solveeit Logo

Question

Question: Find the set of values of a for which $9x^{2}+2(a+1)x+4>0$ $\forall x \in R$...

Find the set of values of a for which 9x2+2(a+1)x+4>09x^{2}+2(a+1)x+4>0 xR\forall x \in R

Answer

a(7,5)a \in (-7, 5)

Explanation

Solution

Given the quadratic

f(x)=9x2+2(a+1)x+4,f(x)=9x^2+2(a+1)x+4,

for f(x)>0f(x) > 0 for all xRx \in \mathbb{R}, the necessary condition is that its discriminant must be negative.

  1. Calculate the discriminant:

    D=[2(a+1)]24(9)(4)=4(a+1)2144.D = [2(a+1)]^2 - 4(9)(4) = 4(a+1)^2 - 144.
  2. Set the discriminant less than zero:

    4(a+1)2144<0.4(a+1)^2 - 144 < 0.
  3. Simplify:

    (a+1)2<36.(a+1)^2 < 36.
  4. Solve the inequality:

    6<a+1<67<a<5.-6 < a+1 < 6 \quad \Longrightarrow \quad -7 < a < 5.

Thus, the quadratic remains positive for all xx if and only if

7<a<5.\boxed{-7 < a < 5.}

Core Explanation:
For 9x2+2(a+1)x+4>09x^2+2(a+1)x+4 > 0 to hold for every xx, its discriminant must be negative. This results in the inequality (a+1)2<36(a+1)^2 < 36 which simplifies to 7<a<5-7 < a < 5.