Solveeit Logo

Question

Question: For the projectile shown in figure what will be angle of projection?...

For the projectile shown in figure what will be angle of projection?

A

53°

B

tan1(74)\tan^{-1}(\frac{7}{4})

C

sin1(27)\sin^{-1}(\frac{2}{7})

D

tan1(47)\tan^{-1}(\frac{4}{7})

Answer

tan1(74)\tan^{-1}(\frac{7}{4})

Explanation

Solution

To find the angle of projection (θ\theta), we can use the properties of projectile motion.

Let the projectile be launched from the origin (0,0) with an initial velocity uu at an angle θ\theta with the horizontal. The projectile lands at a horizontal distance RR from the origin.

The equation of the trajectory of a projectile is given by: y=xtanθ(1xR)y = x \tan\theta \left(1 - \frac{x}{R}\right)

From the figure, let P(x, y) be the point on the trajectory. The angle formed by the line joining the origin (0,0) to P(x,y) with the horizontal is α=37\alpha = 37^\circ. So, tanα=yx\tan\alpha = \frac{y}{x}. Given α=37\alpha = 37^\circ, we know tan37=34\tan 37^\circ = \frac{3}{4}. Therefore, yx=34\frac{y}{x} = \frac{3}{4} (Equation 1)

The angle formed by the line joining the landing point (R,0) to P(x,y) with the horizontal is β=45\beta = 45^\circ. So, tanβ=yRx\tan\beta = \frac{y}{R-x}. Given β=45\beta = 45^\circ, we know tan45=1\tan 45^\circ = 1. Therefore, yRx=1\frac{y}{R-x} = 1 (Equation 2)

From Equation 1, y=34xy = \frac{3}{4}x. From Equation 2, y=Rxy = R-x.

Equating the expressions for yy: 34x=Rx\frac{3}{4}x = R-x 34x+x=R\frac{3}{4}x + x = R 74x=R\frac{7}{4}x = R x=47Rx = \frac{4}{7}R

Now substitute the value of xx back into the expression for yy: y=34x=34(47R)=37Ry = \frac{3}{4}x = \frac{3}{4} \left(\frac{4}{7}R\right) = \frac{3}{7}R

So, the coordinates of the point P are (47R,37R)\left(\frac{4}{7}R, \frac{3}{7}R\right).

Now, substitute these coordinates into the trajectory equation: y=xtanθ(1xR)y = x \tan\theta \left(1 - \frac{x}{R}\right) 37R=(47R)tanθ(147RR)\frac{3}{7}R = \left(\frac{4}{7}R\right) \tan\theta \left(1 - \frac{\frac{4}{7}R}{R}\right) 37R=47Rtanθ(147)\frac{3}{7}R = \frac{4}{7}R \tan\theta \left(1 - \frac{4}{7}\right) 37R=47Rtanθ(37)\frac{3}{7}R = \frac{4}{7}R \tan\theta \left(\frac{3}{7}\right)

Cancel RR from both sides (assuming R0R \neq 0): 37=47tanθ(37)\frac{3}{7} = \frac{4}{7} \tan\theta \left(\frac{3}{7}\right)

Cancel 37\frac{3}{7} from both sides (assuming 370\frac{3}{7} \neq 0): 1=47tanθ1 = \frac{4}{7} \tan\theta tanθ=74\tan\theta = \frac{7}{4}

Therefore, the angle of projection is θ=tan1(74)\theta = \tan^{-1}\left(\frac{7}{4}\right).

Alternatively, a useful formula for this scenario is: If a projectile is launched from the origin with angle θ\theta and range RR, and a point P on its trajectory makes angles α\alpha and β\beta with the horizontal from the origin and the landing point respectively, then: tanθ=tanα+tanβ\tan\theta = \tan\alpha + \tan\beta

In this problem, α=37\alpha = 37^\circ and β=45\beta = 45^\circ. tan37=34\tan 37^\circ = \frac{3}{4} tan45=1\tan 45^\circ = 1

Using the formula: tanθ=34+1=3+44=74\tan\theta = \frac{3}{4} + 1 = \frac{3+4}{4} = \frac{7}{4} θ=tan1(74)\theta = \tan^{-1}\left(\frac{7}{4}\right)

The angle of projection is tan1(74)\tan^{-1}(\frac{7}{4}). The correct option is (b).