Solveeit Logo

Question

Question: Solve the inequality $\frac{(x-2)^{10000}(x+1)^{253}(x-\frac{1}{2})^{971}(x+8)^4}{x^{500}(x-3)^{75}...

Solve the inequality

(x2)10000(x+1)253(x12)971(x+8)4x500(x3)75(x+2)930\frac{(x-2)^{10000}(x+1)^{253}(x-\frac{1}{2})^{971}(x+8)^4}{x^{500}(x-3)^{75}(x+2)^{93}} \ge 0

Answer

(,2)[1,0)(0,12]{2}(3,)(-\infty, -2) \cup [-1, 0) \cup (0, \frac{1}{2}] \cup \{2\} \cup (3, \infty)

Explanation

Solution

To solve the inequality (x2)10000(x+1)253(x12)971(x+8)4x500(x3)75(x+2)930\frac{(x-2)^{10000}(x+1)^{253}(x-\frac{1}{2})^{971}(x+8)^4}{x^{500}(x-3)^{75}(x+2)^{93}} \ge 0, we use the sign chart method.

1. Find the Critical Points:

Set each factor in the numerator and denominator to zero:

  • From numerator:
    • x2=0x=2x-2=0 \Rightarrow x=2 (even power: 10000)
    • x+1=0x=1x+1=0 \Rightarrow x=-1 (odd power: 253)
    • x12=0x=12x-\frac{1}{2}=0 \Rightarrow x=\frac{1}{2} (odd power: 971)
    • x+8=0x=8x+8=0 \Rightarrow x=-8 (even power: 4)
  • From denominator:
    • x=0x=0x=0 \Rightarrow x=0 (even power: 500)
    • x3=0x=3x-3=0 \Rightarrow x=3 (odd power: 75)
    • x+2=0x=2x+2=0 \Rightarrow x=-2 (odd power: 93)

List all critical points in increasing order: 8,2,1,0,12,2,3-8, -2, -1, 0, \frac{1}{2}, 2, 3.

2. Analyze the Effect of Powers:

  • Odd powers: At roots corresponding to factors with odd powers, the sign of the expression changes. These are x=1,x=12,x=2,x=3x=-1, x=\frac{1}{2}, x=-2, x=3.
  • Even powers: At roots corresponding to factors with even powers, the sign of the expression does not change. These are x=2,x=8,x=0x=2, x=-8, x=0.
  • Denominator roots: Points x=0,x=3,x=2x=0, x=3, x=-2 make the denominator zero, so the expression is undefined at these points. They must always be excluded from the solution.
  • Numerator roots: Points x=2,x=1,x=12,x=8x=2, x=-1, x=\frac{1}{2}, x=-8 make the expression zero. Since the inequality is 0\ge 0, these points are included in the solution if they are not denominator roots.

3. Determine the Sign in Intervals (Sign Chart):

Start with the rightmost interval (3,)(3, \infty). Let x=4x=4:

All factors (x2),(x+1),(x12),(x+8),x,(x3),(x+2)(x-2), (x+1), (x-\frac{1}{2}), (x+8), x, (x-3), (x+2) are positive.

So, (+)10000(+)253(+)971(+)4(+)500(+)75(+)93=(+)0\frac{(+)^{10000}(+)^{253}(+)^{971}(+)^4}{(+)^{500}(+)^{75}(+)^{93}} = (+) \ge 0.

Thus, f(x)>0f(x) > 0 for x(3,)x \in (3, \infty).

Now, move left across the critical points, changing sign only at odd-powered roots:

IntervalTest PointSign of f(x)f(x)Reason for sign change/no change
(3,)(3, \infty)x=4x=4++(Starting point)
x=3x=3UndefinedOdd power (75), denominator root
(2,3)(2, 3)x=2.5x=2.5-Sign changes at x=3x=3
x=2x=200Even power (10000), numerator root. Sign does not change across x=2x=2.
(12,2)(\frac{1}{2}, 2)x=1x=1-Sign does not change at x=2x=2
x=12x=\frac{1}{2}00Odd power (971), numerator root. Sign changes across x=12x=\frac{1}{2}.
(0,12)(0, \frac{1}{2})x=0.1x=0.1++Sign changes at x=12x=\frac{1}{2}
x=0x=0UndefinedEven power (500), denominator root. Sign does not change across x=0x=0.
(1,0)(-1, 0)x=0.5x=-0.5++Sign does not change at x=0x=0
x=1x=-100Odd power (253), numerator root. Sign changes across x=1x=-1.
(2,1)(-2, -1)x=1.5x=-1.5-Sign changes at x=1x=-1
x=2x=-2UndefinedOdd power (93), denominator root. Sign changes across x=2x=-2.
(8,2)(-8, -2)x=3x=-3++Sign changes at x=2x=-2
x=8x=-800Even power (4), numerator root. Sign does not change across x=8x=-8.
(,8)(-\infty, -8)x=9x=-9++Sign does not change at x=8x=-8

4. Formulate the Solution Set:

We need f(x)0f(x) \ge 0. This means f(x)>0f(x) > 0 or f(x)=0f(x) = 0.

  • Intervals where f(x)>0f(x) > 0: (,8)(-\infty, -8), (8,2)(-8, -2), (1,0)(-1, 0), (0,12)(0, \frac{1}{2}), (3,)(3, \infty).

  • Points where f(x)=0f(x) = 0 (numerator roots): x=8,x=1,x=12,x=2x=-8, x=-1, x=\frac{1}{2}, x=2.

  • Points where f(x)f(x) is undefined (denominator roots): x=2,x=0,x=3x=-2, x=0, x=3. These must be excluded.

Combine the intervals and points:

  1. From (,8)(-\infty, -8) and x=8x=-8 and (8,2)(-8, -2): This combines to (,2)(-\infty, -2). (Note: x=2x=-2 is excluded).
  2. From (1,0)(-1, 0) and x=1x=-1: This combines to [1,0)[-1, 0). (Note: x=0x=0 is excluded).
  3. From (0,12)(0, \frac{1}{2}) and x=12x=\frac{1}{2}: This combines to (0,12](0, \frac{1}{2}]. (Note: x=0x=0 is excluded).
  4. The point x=2x=2 makes f(x)=0f(x)=0, and it's not excluded by the denominator. So, x=2x=2 is an isolated solution.
  5. From (3,)(3, \infty): This is an interval where f(x)>0f(x) > 0. (Note: x=3x=3 is excluded).

The final solution is the union of these parts:

x(,2)[1,0)(0,12]{2}(3,)x \in (-\infty, -2) \cup [-1, 0) \cup (0, \frac{1}{2}] \cup \{2\} \cup (3, \infty).