Solveeit Logo

Question

Question: If a, b, c, d, e are positive real numbers, such that $a+b+c+d+e=8$ and $a^2 + b^2+c^2 + d^2 + e^2 ...

If a, b, c, d, e are positive real numbers, such that

a+b+c+d+e=8a+b+c+d+e=8 and a2+b2+c2+d2+e2=16a^2 + b^2+c^2 + d^2 + e^2 = 16, find the range of e.

Answer

e ∈ (0, 16/5]

Explanation

Solution

We are given:

a+b+c+d+e=8anda2+b2+c2+d2+e2=16,a+b+c+d+e=8 \quad \text{and} \quad a^2+b^2+c^2+d^2+e^2=16,

with a,b,c,d,e>0a,b,c,d,e>0.

Let

S=a+b+c+d=8e,T=a2+b2+c2+d2=16e2.S = a+b+c+d = 8 - e,\quad T = a^2+b^2+c^2+d^2 = 16 - e^2.

By the QM–AM inequality for the four positive numbers a,b,c,da, b, c, d,

T4S4.\sqrt{\frac{T}{4}} \ge \frac{S}{4}.

Squaring both sides,

T4(S4)24TS2.\frac{T}{4} \ge \left(\frac{S}{4}\right)^2 \quad\Rightarrow\quad 4T \ge S^2.

Substitute TT and SS:

4(16e2)(8e)2.4(16 - e^2) \ge (8-e)^2.

Expanding both sides:

644e26416e+e2.64 - 4e^2 \ge 64 - 16e + e^2.

Bring all terms to one side:

644e264+16ee205e2+16e0.64 - 4e^2 - 64 + 16e - e^2 \ge 0 \quad\Rightarrow\quad -5e^2 + 16e \ge 0.

Multiply by 1-1 (reversing the inequality):

5e216e0e(5e16)0.5e^2 - 16e \le 0 \quad\Rightarrow\quad e(5e - 16) \le 0.

Thus, the inequality holds when:

0e165.0 \le e \le \frac{16}{5}.

Since e>0e > 0 (positivity condition), the range is

0<e165.0 < e \le \frac{16}{5}.

We also note that the upper bound e=165e=\frac{16}{5} is attainable by choosing

a=b=c=d=81654=65,a=b=c=d=\frac{8-\frac{16}{5}}{4}=\frac{6}{5},

which are positive. The lower bound is not attained because if e=0e=0 then ee is not positive; however, values of ee can get arbitrarily close to 00.

Answer:
e(0,165]e \in \left(0, \frac{16}{5}\right].