Solveeit Logo

Question

Question: If the minor of three-one element (i.e. $M_{31}$) in the determinant $\begin{vmatrix} 0 & 1 & \sec \...

If the minor of three-one element (i.e. M31M_{31}) in the determinant 01secαtanαsecαtanα101\begin{vmatrix} 0 & 1 & \sec \alpha \\ \tan \alpha & -\sec \alpha & \tan \alpha \\ 1 & 0 & 1 \end{vmatrix} is 1 then find the value of α\alpha. (0απ)(0 \le \alpha \le \pi).

Answer

0, 3π4\frac{3\pi}{4}, π\pi

Explanation

Solution

To find the value of α\alpha, we first need to calculate the minor of the three-one element (M31M_{31}) of the given determinant.

The given determinant is:

01secαtanαsecαtanα101\begin{vmatrix} 0 & 1 & \sec \alpha \\ \tan \alpha & -\sec \alpha & \tan \alpha \\ 1 & 0 & 1 \end{vmatrix}

The element a31a_{31} is 1. The minor M31M_{31} is the determinant obtained by deleting the 3rd row and the 1st column:

M31=1secαsecαtanαM_{31} = \begin{vmatrix} 1 & \sec \alpha \\ -\sec \alpha & \tan \alpha \end{vmatrix}

Now, we calculate the value of this 2×22 \times 2 determinant:

M31=(1)(tanα)(secα)(secα)M_{31} = (1)(\tan \alpha) - (\sec \alpha)(-\sec \alpha) M31=tanα+sec2αM_{31} = \tan \alpha + \sec^2 \alpha

We are given that the minor M31M_{31} is equal to 1. So, we set up the equation:

tanα+sec2α=1\tan \alpha + \sec^2 \alpha = 1

We know the trigonometric identity sec2α=1+tan2α\sec^2 \alpha = 1 + \tan^2 \alpha. Substitute this into the equation:

tanα+(1+tan2α)=1\tan \alpha + (1 + \tan^2 \alpha) = 1 tan2α+tanα+1=1\tan^2 \alpha + \tan \alpha + 1 = 1

Subtract 1 from both sides of the equation:

tan2α+tanα=0\tan^2 \alpha + \tan \alpha = 0

Factor out tanα\tan \alpha:

tanα(tanα+1)=0\tan \alpha (\tan \alpha + 1) = 0

This equation implies two possible cases:

  1. tanα=0\tan \alpha = 0
  2. tanα+1=0    tanα=1\tan \alpha + 1 = 0 \implies \tan \alpha = -1

We need to find the values of α\alpha in the given range 0απ0 \le \alpha \le \pi.

Case 1: tanα=0\tan \alpha = 0

For 0απ0 \le \alpha \le \pi, the values of α\alpha for which tanα=0\tan \alpha = 0 are α=0\alpha = 0 and α=π\alpha = \pi.

Case 2: tanα=1\tan \alpha = -1

For 0απ0 \le \alpha \le \pi, tanα\tan \alpha is negative only in the second quadrant. The reference angle for tanα=1\tan \alpha = 1 is π4\frac{\pi}{4}. Therefore, the angle in the second quadrant is α=ππ4=3π4\alpha = \pi - \frac{\pi}{4} = \frac{3\pi}{4}.

Thus, the possible values of α\alpha in the given range are 0,3π4,π0, \frac{3\pi}{4}, \pi.