Solveeit Logo

Question

Question: \(\cos ^{-1}(\sqrt{1-x^{2}})\) in terms of sin^-1x...

cos1(1x2)\cos ^{-1}(\sqrt{1-x^{2}}) in terms of sin^-1x

A

sin1x\sin^{-1}x

B

π2sin1x\frac{\pi}{2} - \sin^{-1}x

C

π2sin1x\frac{\pi}{2} - |\sin^{-1}x|

D

sin1x|\sin^{-1}x|

Answer

sin1x|\sin^{-1}x|

Explanation

Solution

Let y=cos1(1x2)y = \cos^{-1}(\sqrt{1-x^2}). We know that for A0A \ge 0, cos1A=sin11A2\cos^{-1}A = \sin^{-1}\sqrt{1-A^2}. Here, A=1x2A = \sqrt{1-x^2}, which is always non-negative when defined. So, y=sin11(1x2)2=sin11(1x2)=sin1x2=sin1xy = \sin^{-1}\sqrt{1 - (\sqrt{1-x^2})^2} = \sin^{-1}\sqrt{1 - (1-x^2)} = \sin^{-1}\sqrt{x^2} = \sin^{-1}|x|.

Now, consider the properties of sin1x\sin^{-1}|x|: If x0x \ge 0, then x=x|x|=x, so sin1x=sin1x\sin^{-1}|x| = \sin^{-1}x. If x<0x < 0, then x=x|x|=-x, so sin1x=sin1(x)\sin^{-1}|x| = \sin^{-1}(-x). Since sin1\sin^{-1} is an odd function, sin1(x)=sin1x\sin^{-1}(-x) = -\sin^{-1}x. Thus, sin1x\sin^{-1}|x| can be written as sin1x\sin^{-1}x for x0x \ge 0 and sin1x-\sin^{-1}x for x<0x < 0. This is exactly the definition of sin1x|\sin^{-1}x|. Therefore, cos1(1x2)=sin1x\cos^{-1}(\sqrt{1-x^2}) = |\sin^{-1}x|.