Solveeit Logo

Question

Question: Three concentric metal shells $A, B$ and $C$ of respective radii $a, b$ and $c(a < b < c)$ have surf...

Three concentric metal shells A,BA, B and CC of respective radii a,ba, b and c(a<b<c)c(a < b < c) have surface charge densities +σ,σ+\sigma, -\sigma and +σ+\sigma respectively. The potential of shell B is:

A

σϵ0[b2c2b+a]\frac{\sigma}{\epsilon_0}[\frac{b^2-c^2}{b}+a]

B

σϵ0[b2c2c+a]\frac{\sigma}{\epsilon_0}[\frac{b^2-c^2}{c}+a]

C

σϵ0[a2b2a+c]\frac{\sigma}{\epsilon_0}[\frac{a^2-b^2}{a}+c]

D

σϵ0[a2b2b+c]\frac{\sigma}{\epsilon_0}[\frac{a^2-b^2}{b}+c]

Answer

σϵ0[a2b2b+c]\frac{\sigma}{\epsilon_0}[\frac{a^2-b^2}{b}+c]

Explanation

Solution

The potential at radius bb is the sum of potentials due to each shell. Charge on shell A: QA=σ4πa2Q_A = \sigma \cdot 4\pi a^2 Charge on shell B: QB=σ4πb2Q_B = -\sigma \cdot 4\pi b^2 Charge on shell C: QC=σ4πc2Q_C = \sigma \cdot 4\pi c^2

Potential at radius bb due to shell A (since b>ab > a): VA=kQAb=14πϵ0σ4πa2b=σa2ϵ0bV_A = \frac{k Q_A}{b} = \frac{1}{4\pi\epsilon_0} \frac{\sigma \cdot 4\pi a^2}{b} = \frac{\sigma a^2}{\epsilon_0 b} Potential at radius bb due to shell B (since bb is on the surface): VB=kQBb=14πϵ0σ4πb2b=σb2ϵ0b=σbϵ0V_B = \frac{k Q_B}{b} = \frac{1}{4\pi\epsilon_0} \frac{-\sigma \cdot 4\pi b^2}{b} = -\frac{\sigma b^2}{\epsilon_0 b} = -\frac{\sigma b}{\epsilon_0} Potential at radius bb due to shell C (since b<cb < c): VC=kQCc=14πϵ0σ4πc2c=σc2ϵ0c=σcϵ0V_C = \frac{k Q_C}{c} = \frac{1}{4\pi\epsilon_0} \frac{\sigma \cdot 4\pi c^2}{c} = \frac{\sigma c^2}{\epsilon_0 c} = \frac{\sigma c}{\epsilon_0}

Total potential at bb: VB=VA+VB+VC=σa2ϵ0bσbϵ0+σcϵ0=σϵ0(a2bb+c)=σϵ0(a2b2b+c)V_B = V_A + V_B + V_C = \frac{\sigma a^2}{\epsilon_0 b} - \frac{\sigma b}{\epsilon_0} + \frac{\sigma c}{\epsilon_0} = \frac{\sigma}{\epsilon_0} (\frac{a^2}{b} - b + c) = \frac{\sigma}{\epsilon_0} (\frac{a^2-b^2}{b} + c).