Solveeit Logo

Question

Question: The graph shows the extension of a wire of length 1 m suspended from a roof at one end and with a lo...

The graph shows the extension of a wire of length 1 m suspended from a roof at one end and with a load W connected to the other end. If the cross sectional area of the wire is 1mm21 mm^2, then the Young's modulus of the material of the wire is

A

3×1010N/m23 \times 10^{10} N/m^2

B

2×1010N/m22 \times 10^{10} N/m^2

C

1×1010N/m21 \times 10^{10} N/m^2

D

0.5×1010N/m20.5 \times 10^{10} N/m^2

Answer

2×1010N/m22 \times 10^{10} N/m^2

Explanation

Solution

Young's modulus (YY) is defined as the ratio of stress to strain: Y=StressStrainY = \frac{\text{Stress}}{\text{Strain}} where Stress =FA= \frac{F}{A} and Strain =ΔLL= \frac{\Delta L}{L}. Thus, the formula for Young's modulus is: Y=FLAΔLY = \frac{F \cdot L}{A \cdot \Delta L} From the given graph, we can pick a point. Let's choose the point where the load W=100W = 100 N and the extension ΔL=5\Delta L = 5 mm. Given:

  • Original length of the wire, L=1L = 1 m.
  • Cross-sectional area of the wire, A=1A = 1 mm2^2. Convert to m2^2: A=1×(103 m)2=1×106A = 1 \times (10^{-3} \text{ m})^2 = 1 \times 10^{-6} m2^2.
  • Load, F=W=100F = W = 100 N.
  • Extension, ΔL=5\Delta L = 5 mm. Convert to m: ΔL=5×103\Delta L = 5 \times 10^{-3} m.

Substitute these values into the Young's modulus formula: Y=(100 N)(1 m)(1×106 m2)(5×103 m)Y = \frac{(100 \text{ N}) \cdot (1 \text{ m})}{(1 \times 10^{-6} \text{ m}^2) \cdot (5 \times 10^{-3} \text{ m})} Y=1005×109 N/m2Y = \frac{100}{5 \times 10^{-9}} \text{ N/m}^2 Y=20×109 N/m2Y = 20 \times 10^9 \text{ N/m}^2 Y=2×1010 N/m2Y = 2 \times 10^{10} \text{ N/m}^2