Solveeit Logo

Question

Question: A motor rotates a pulley of radius 25 cm at 20 rpm. A rope around the pulley lifts a 50 kg block, th...

A motor rotates a pulley of radius 25 cm at 20 rpm. A rope around the pulley lifts a 50 kg block, the power output of the motor is

A

261 w

B

216 w

C

305 w

D

117 w

Answer

261 w

Explanation

Solution

The problem asks for the power output of a motor that lifts a block using a pulley.

Here's a step-by-step solution:

  1. Identify the given parameters:

    • Radius of the pulley, R=25 cm=0.25 mR = 25 \text{ cm} = 0.25 \text{ m}
    • Rotational speed of the pulley, N=20 rpmN = 20 \text{ rpm} (revolutions per minute)
    • Mass of the block, m=50 kgm = 50 \text{ kg}
  2. Convert rotational speed to angular velocity (ω\omega): The rotational speed NN in rpm can be converted to angular velocity ω\omega in radians per second using the formula: ω=N×2π rad1 revolution×1 minute60 seconds\omega = N \times \frac{2\pi \text{ rad}}{1 \text{ revolution}} \times \frac{1 \text{ minute}}{60 \text{ seconds}} ω=20×2π60 rad/s=40π60 rad/s=2π3 rad/s\omega = 20 \times \frac{2\pi}{60} \text{ rad/s} = \frac{40\pi}{60} \text{ rad/s} = \frac{2\pi}{3} \text{ rad/s}

  3. Calculate the force required to lift the block: The force required to lift the block at a constant velocity is equal to its weight. We'll use g=10 m/s2g = 10 \text{ m/s}^2 as it often leads to options in competitive exams. F=mg=50 kg×10 m/s2=500 NF = mg = 50 \text{ kg} \times 10 \text{ m/s}^2 = 500 \text{ N}

  4. Calculate the linear speed (vv) of the rope: The linear speed of the rope is the tangential speed of the pulley's rim: v=Rωv = R\omega v=0.25 m×2π3 rad/s=0.5π3 m/s=π6 m/sv = 0.25 \text{ m} \times \frac{2\pi}{3} \text{ rad/s} = \frac{0.5\pi}{3} \text{ m/s} = \frac{\pi}{6} \text{ m/s}

  5. Calculate the power output (PP) of the motor: The power output of the motor is the product of the force applied and the linear speed: P=FvP = F \cdot v P=500 N×π6 m/s=500π6 W=250π3 WP = 500 \text{ N} \times \frac{\pi}{6} \text{ m/s} = \frac{500\pi}{6} \text{ W} = \frac{250\pi}{3} \text{ W}

    Now, substitute the value of π3.14159\pi \approx 3.14159: P=250×3.141593=785.39753261.799 WP = \frac{250 \times 3.14159}{3} = \frac{785.3975}{3} \approx 261.799 \text{ W}

    Rounding this value, we get approximately 262 W262 \text{ W}. Among the given options, 261 W261 \text{ W} is the closest.