Solveeit Logo

Question

Question: $S_2O_8^{2-}$(aq) oxidises $Mn^{2+}$(aq) to $MnO_4^-$ (aq) in acidic medium. The number of moles of ...

S2O82S_2O_8^{2-}(aq) oxidises Mn2+Mn^{2+}(aq) to MnO4MnO_4^- (aq) in acidic medium. The number of moles of S2O82S_2O_8^{2-} required to oxidise one mole Mn2+Mn^{2+} to MnO4MnO_4^- is

A

0.4

B

2.5

C

2

D

5

Answer

2.5

Explanation

Solution

The problem asks for the number of moles of S2O82S_2O_8^{2-} required to oxidize one mole of Mn2+Mn^{2+} to MnO4MnO_4^- in an acidic medium. We can solve this by balancing the redox reaction or by using the concept of n-factors (equivalents).

Method 1: Balancing the Redox Reaction

  1. Identify the oxidation and reduction half-reactions:

    • Oxidation: Mn2+MnO4Mn^{2+} \rightarrow MnO_4^-
    • Reduction: S2O82SO42S_2O_8^{2-} \rightarrow SO_4^{2-}
  2. Balance the oxidation half-reaction: Mn2+Mn^{2+} has an oxidation state of +2. In MnO4MnO_4^-, Mn has an oxidation state of +7 (since x+4(2)=1x=+7x + 4(-2) = -1 \Rightarrow x = +7). The change in oxidation state for Mn is 72=57 - 2 = 5. So, 5 electrons are lost. Balance oxygen atoms by adding H2OH_2O and hydrogen atoms by adding H+H^+ (acidic medium): Mn2++4H2OMnO4+8H++5eMn^{2+} + 4H_2O \rightarrow MnO_4^- + 8H^+ + 5e^-

  3. Balance the reduction half-reaction: In S2O82S_2O_8^{2-} (peroxodisulfate ion), the average oxidation state of sulfur is +7 (since 2x+8(2)=22x=14x=+72x + 8(-2) = -2 \Rightarrow 2x = 14 \Rightarrow x = +7). In SO42SO_4^{2-}, sulfur has an oxidation state of +6 (since y+4(2)=2y=+6y + 4(-2) = -2 \Rightarrow y = +6). The change in oxidation state per sulfur atom is 76=17 - 6 = 1. Since there are two sulfur atoms in S2O82S_2O_8^{2-} that get reduced to 2SO422SO_4^{2-}, a total of 2×1=22 \times 1 = 2 electrons are gained. Balance the sulfur atoms first: S2O822SO42S_2O_8^{2-} \rightarrow 2SO_4^{2-} Now, add electrons to balance the charge: S2O82+2e2SO42S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}

  4. Equalize the number of electrons transferred: The oxidation half-reaction involves 5 electrons, and the reduction half-reaction involves 2 electrons. To balance the electrons, multiply the oxidation half-reaction by 2 and the reduction half-reaction by 5.

    • 2×(Mn2++4H2OMnO4+8H++5e)2 \times (Mn^{2+} + 4H_2O \rightarrow MnO_4^- + 8H^+ + 5e^-)

2Mn2++8H2O2MnO4+16H++10e2Mn^{2+} + 8H_2O \rightarrow 2MnO_4^- + 16H^+ + 10e^- * 5×(S2O82+2e2SO42)5 \times (S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-})

5S2O82+10e10SO425S_2O_8^{2-} + 10e^- \rightarrow 10SO_4^{2-}

  1. Add the balanced half-reactions:

2Mn2++8H2O+5S2O82+10e2MnO4+16H++10e+10SO422Mn^{2+} + 8H_2O + 5S_2O_8^{2-} + 10e^- \rightarrow 2MnO_4^- + 16H^+ + 10e^- + 10SO_4^{2-} Cancel out the electrons:

2Mn2+(aq)+5S2O82(aq)+8H2O(l)2MnO4(aq)+10SO42(aq)+16H+(aq)2Mn^{2+} (aq) + 5S_2O_8^{2-} (aq) + 8H_2O (l) \rightarrow 2MnO_4^- (aq) + 10SO_4^{2-} (aq) + 16H^+ (aq)

  1. Determine the mole ratio: From the balanced equation, 2 moles of Mn2+Mn^{2+} react with 5 moles of S2O82S_2O_8^{2-}. Therefore, for 1 mole of Mn2+Mn^{2+}, the moles of S2O82S_2O_8^{2-} required will be: Moles of S2O82=5 moles S2O822 moles Mn2+×1 mole Mn2+=2.5 moles S2O82S_2O_8^{2-} = \frac{5 \text{ moles } S_2O_8^{2-}}{2 \text{ moles } Mn^{2+}} \times 1 \text{ mole } Mn^{2+} = 2.5 \text{ moles } S_2O_8^{2-}

Method 2: Using n-factors (Equivalents Concept)

The number of equivalents of oxidant must be equal to the number of equivalents of reductant. Number of equivalents = number of moles ×\times n-factor

  1. Calculate the n-factor for Mn2+Mn^{2+}:

Mn2+MnO4Mn^{2+} \rightarrow MnO_4^- Oxidation state change: +2 to +7. Number of electrons lost = 5. So, n-factor (nMn2+n_{Mn^{2+}}) = 5.

  1. Calculate the n-factor for S2O82S_2O_8^{2-}:

S2O822SO42S_2O_8^{2-} \rightarrow 2SO_4^{2-} This reaction involves the gain of 2 electrons per mole of S2O82S_2O_8^{2-}. So, n-factor (nS2O82n_{S_2O_8^{2-}}) = 2.

  1. Apply the equivalence principle: Moles of S2O82S_2O_8^{2-} ×nS2O82\times n_{S_2O_8^{2-}} = Moles of Mn2+Mn^{2+} ×nMn2+\times n_{Mn^{2+}} Let 'x' be the moles of S2O82S_2O_8^{2-} required.

x×2=1×5x \times 2 = 1 \times 5

2x=52x = 5

x=52=2.5x = \frac{5}{2} = 2.5

Both methods yield the same result.

The balanced redox reaction is:

2Mn2+(aq)+5S2O82(aq)+8H2O(l)2MnO4(aq)+10SO42(aq)+16H+(aq)2Mn^{2+} (aq) + 5S_2O_8^{2-} (aq) + 8H_2O (l) \rightarrow 2MnO_4^- (aq) + 10SO_4^{2-} (aq) + 16H^+ (aq)

From the stoichiometry, 2 moles of Mn2+Mn^{2+} are oxidized by 5 moles of S2O82S_2O_8^{2-}. Therefore, 1 mole of Mn2+Mn^{2+} requires 52=2.5\frac{5}{2} = 2.5 moles of S2O82S_2O_8^{2-}.