Solveeit Logo

Question

Question: Let f(x) = \sum_{n=1}^\infty \left( \frac{2^{2n-1}}{1+x^{2n}} \right) \left( \frac{x^{2^{n-1}}}{1} \...

Let f(x) = \sum_{n=1}^\infty \left( \frac{2^{2n-1}}{1+x^{2n}} \right) \left( \frac{x^{2^{n-1}}}{1} \right) for x \in (0, 1), then f'\left(\frac{1}{4}\right) is ____.

Answer

544/225

Explanation

Solution

Question 9: Solution

Let's assume the question has a typo and the intended function is f(x)=n=12nx2n11+x2nf(x) = \sum_{n=1}^\infty \frac{2^n x^{2^n-1}}{1+x^{2^n}}. This is a common type of series in competitive exams that simplifies.

We know the identity derived from the product k=0(1+x2k)=11x\prod_{k=0}^\infty (1+x^{2^k}) = \frac{1}{1-x}. Taking the natural logarithm of both sides: k=0ln(1+x2k)=ln(11x)=ln(1x)\sum_{k=0}^\infty \ln(1+x^{2^k}) = \ln\left(\frac{1}{1-x}\right) = -\ln(1-x). Differentiating both sides with respect to xx: k=011+x2k(2kx2k1)=11x\sum_{k=0}^\infty \frac{1}{1+x^{2^k}} \cdot (2^k x^{2^k-1}) = \frac{1}{1-x}. Let's split the sum: 20x2011+x20+k=12kx2k11+x2k=11x\frac{2^0 x^{2^0-1}}{1+x^{2^0}} + \sum_{k=1}^\infty \frac{2^k x^{2^k-1}}{1+x^{2^k}} = \frac{1}{1-x}. 11+x+k=12kx2k11+x2k=11x\frac{1}{1+x} + \sum_{k=1}^\infty \frac{2^k x^{2^k-1}}{1+x^{2^k}} = \frac{1}{1-x}. Therefore, f(x)=k=12kx2k11+x2k=11x11+x=(1+x)(1x)(1x)(1+x)=2x1x2f(x) = \sum_{k=1}^\infty \frac{2^k x^{2^k-1}}{1+x^{2^k}} = \frac{1}{1-x} - \frac{1}{1+x} = \frac{(1+x)-(1-x)}{(1-x)(1+x)} = \frac{2x}{1-x^2}. Now we need to find f(x)f'(x). f(x)=ddx(2x1x2)f'(x) = \frac{d}{dx} \left( \frac{2x}{1-x^2} \right). Using the quotient rule: ddx(uv)=uvuvv2\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2}. Here, u=2xu=2x and v=1x2v=1-x^2. So u=2u'=2 and v=2xv'=-2x. f(x)=2(1x2)2x(2x)(1x2)2=22x2+4x2(1x2)2=2+2x2(1x2)2=2(1+x2)(1x2)2f'(x) = \frac{2(1-x^2) - 2x(-2x)}{(1-x^2)^2} = \frac{2-2x^2+4x^2}{(1-x^2)^2} = \frac{2+2x^2}{(1-x^2)^2} = \frac{2(1+x^2)}{(1-x^2)^2}. Finally, we need to evaluate f(14)f'\left(\frac{1}{4}\right): f(14)=2(1+(14)2)(1(14)2)2=2(1+116)(1116)2=2(16+116)(16116)2=2(1716)(1516)2f'\left(\frac{1}{4}\right) = \frac{2\left(1+\left(\frac{1}{4}\right)^2\right)}{\left(1-\left(\frac{1}{4}\right)^2\right)^2} = \frac{2\left(1+\frac{1}{16}\right)}{\left(1-\frac{1}{16}\right)^2} = \frac{2\left(\frac{16+1}{16}\right)}{\left(\frac{16-1}{16}\right)^2} = \frac{2\left(\frac{17}{16}\right)}{\left(\frac{15}{16}\right)^2}. f(14)=178225256=178256225=1732225=544225f'\left(\frac{1}{4}\right) = \frac{\frac{17}{8}}{\frac{225}{256}} = \frac{17}{8} \cdot \frac{256}{225} = \frac{17 \cdot 32}{225} = \frac{544}{225}.

Explanation of the solution for Q9 (minimal):

  1. Assume the question intended f(x)=n=12nx2n11+x2nf(x) = \sum_{n=1}^\infty \frac{2^n x^{2^n-1}}{1+x^{2^n}} due to common problem patterns and expected complexity.
  2. Use the identity k=02kx2k11+x2k=11x\sum_{k=0}^\infty \frac{2^k x^{2^k-1}}{1+x^{2^k}} = \frac{1}{1-x} (derived from differentiating ln((1+x2k))=ln(11x)\ln(\prod (1+x^{2^k})) = \ln(\frac{1}{1-x})).
  3. Extract the sum from n=1n=1: f(x)=11x11+x=2x1x2f(x) = \frac{1}{1-x} - \frac{1}{1+x} = \frac{2x}{1-x^2}.
  4. Differentiate f(x)f(x): f(x)=ddx(2x1x2)=2(1x2)2x(2x)(1x2)2=2+2x2(1x2)2f'(x) = \frac{d}{dx}\left(\frac{2x}{1-x^2}\right) = \frac{2(1-x^2) - 2x(-2x)}{(1-x^2)^2} = \frac{2+2x^2}{(1-x^2)^2}.
  5. Substitute x=14x=\frac{1}{4}: f(14)=2(1+(1/4)2)(1(1/4)2)2=2(17/16)(15/16)2=17/8225/256=1732225=544225f'\left(\frac{1}{4}\right) = \frac{2(1+(1/4)^2)}{(1-(1/4)^2)^2} = \frac{2(17/16)}{(15/16)^2} = \frac{17/8}{225/256} = \frac{17 \cdot 32}{225} = \frac{544}{225}.