Question
Question: Let f(x) = \sum_{n=1}^\infty \left( \frac{2^{2n-1}}{1+x^{2n}} \right) \left( \frac{x^{2^{n-1}}}{1} \...
Let f(x) = \sum_{n=1}^\infty \left( \frac{2^{2n-1}}{1+x^{2n}} \right) \left( \frac{x^{2^{n-1}}}{1} \right) for x \in (0, 1), then f'\left(\frac{1}{4}\right) is ____.
544/225
Solution
Question 9: Solution
Let's assume the question has a typo and the intended function is f(x)=∑n=1∞1+x2n2nx2n−1. This is a common type of series in competitive exams that simplifies.
We know the identity derived from the product ∏k=0∞(1+x2k)=1−x1. Taking the natural logarithm of both sides: ∑k=0∞ln(1+x2k)=ln(1−x1)=−ln(1−x). Differentiating both sides with respect to x: ∑k=0∞1+x2k1⋅(2kx2k−1)=1−x1. Let's split the sum: 1+x2020x20−1+∑k=1∞1+x2k2kx2k−1=1−x1. 1+x1+∑k=1∞1+x2k2kx2k−1=1−x1. Therefore, f(x)=∑k=1∞1+x2k2kx2k−1=1−x1−1+x1=(1−x)(1+x)(1+x)−(1−x)=1−x22x. Now we need to find f′(x). f′(x)=dxd(1−x22x). Using the quotient rule: dxd(vu)=v2u′v−uv′. Here, u=2x and v=1−x2. So u′=2 and v′=−2x. f′(x)=(1−x2)22(1−x2)−2x(−2x)=(1−x2)22−2x2+4x2=(1−x2)22+2x2=(1−x2)22(1+x2). Finally, we need to evaluate f′(41): f′(41)=(1−(41)2)22(1+(41)2)=(1−161)22(1+161)=(1616−1)22(1616+1)=(1615)22(1617). f′(41)=256225817=817⋅225256=22517⋅32=225544.
Explanation of the solution for Q9 (minimal):
- Assume the question intended f(x)=∑n=1∞1+x2n2nx2n−1 due to common problem patterns and expected complexity.
- Use the identity ∑k=0∞1+x2k2kx2k−1=1−x1 (derived from differentiating ln(∏(1+x2k))=ln(1−x1)).
- Extract the sum from n=1: f(x)=1−x1−1+x1=1−x22x.
- Differentiate f(x): f′(x)=dxd(1−x22x)=(1−x2)22(1−x2)−2x(−2x)=(1−x2)22+2x2.
- Substitute x=41: f′(41)=(1−(1/4)2)22(1+(1/4)2)=(15/16)22(17/16)=225/25617/8=22517⋅32=225544.