Solveeit Logo

Question

Question: α, β are roots of the equation λ (x<sup>2</sup> – x) + x + 5 = 0. If λ <sub>1</sub> and λ <sub>2</su...

α, β are roots of the equation λ (x2 – x) + x + 5 = 0. If λ 1 and λ 2 are the two values of λ for which the roots α, β are connected by the relation αβ\frac{\alpha}{\beta} + βα\frac{\beta}{\alpha} = 4, then the value of λ1λ2\frac{\lambda_{1}}{\lambda_{2}} + λ2λ1\frac{\lambda_{2}}{\lambda_{1}} is –

A

150

B

254

C

180

D

102

Answer

102

Explanation

Solution

λ (x2 – x) + x + 5 = 0 ⇒ λ x2 + (1 – λ) x + 5 = 0

∴α + β = – 1λλ\frac{1 - \lambda}{\lambda} = λ1λ\frac{\lambda - 1}{\lambda}, αβ = 5λ\frac{5}{\lambda}

Now αβ\frac{\alpha}{\beta}+ βα\frac{\beta}{\alpha}= 4 ⇒ α2 + β2 = 4αβ

⇒ (α + β)2 – 2 αβ = 4αβ

⇒ (α + β)2 = 6 αβ ⇒ (λ1λ)2\left( \frac{\lambda - 1}{\lambda} \right)^{2}= 6(5λ)\left( \frac{5}{\lambda} \right)

⇒ λ 2 + 1 – 2 λ – 30 λ = 0

⇒ λ 2 – 32λ + 1 = 0 

∴λ 1 + λ 2 = 32, λ 1 λ 2 = 1

Now λ1λ2\frac{\lambda_{1}}{\lambda_{2}}+ λ2λ1\frac{\lambda_{2}}{\lambda_{1}}= λ12+λ22λ1λ2\frac{\lambda_{1}^{2} + \lambda_{2}^{2}}{\lambda_{1}\lambda_{2}}= (32)22(1)1\frac{(32)^{2} - 2(1)}{1}= 1022.