Solveeit Logo

Question

Question: = (a cosC + b cosC) + ( b cos A + c cos A) + (c cos B + a cos B) = (a cos C + c cos A) + (b cos A + ...

= (a cosC + b cosC) + ( b cos A + c cos A) + (c cos B + a cos B) = (a cos C + c cos A) + (b cos A + a cos B) + (c cos B + b cos C) = a + b + c =R.H.S.

Ex.(9) In ABC\triangle ABC, prove that a(cos C - cos B) = 2(b - c) cos2(A2)\cos^2 (\frac{A}{2})

Solution : By Projection rule, we have a cos C + c cos A = b and a cos B

\therefore a cos C = b – c cos A and a cos B = c - b cos A

Answer

a(cos C - cos B)=2(b-c)cos^2(A/2).

Explanation

Solution

Explanation:

  1. By the projection rule, we have:

    • acosC+ccosA=ba\cos C + c\cos A = b ⇒ acosC=bccosAa\cos C = b - c\cos A,
    • acosB+bcosA=ca\cos B + b\cos A = c ⇒ acosB=cbcosAa\cos B = c - b\cos A.
  2. Subtract the second equation from the first:

    a(cosCcosB)=(bccosA)(cbcosA)=(bc)+(bc)cosA.a(\cos C - \cos B) = (b - c\cos A) - (c - b\cos A) = (b-c) + (b-c)\cos A.
  3. Factor out (bc)(b-c):

    a(cosCcosB)=(bc)(1+cosA).a(\cos C - \cos B) = (b-c)(1+\cos A).
  4. Recall the half-angle identity:

    1+cosA=2cos2A2.1+\cos A = 2\cos^2\frac{A}{2}.
  5. Thus, we obtain:

    a(cosCcosB)=2(bc)cos2A2.a(\cos C - \cos B) = 2(b-c)\cos^2\frac{A}{2}.

Answer: The identity is proven:

a(cosCcosB)=2(bc)cos2A2.a(\cos C - \cos B)=2(b-c)\cos^2\frac{A}{2}.

Details:

  • Subject: Mathematics
  • Chapter: Trigonometry
  • Topic: Trigonometric Identities and Projection Rule

Difficulty Level: Easy
Question Type: descriptive