Question
Question: = (a cosC + b cosC) + ( b cos A + c cos A) + (c cos B + a cos B) = (a cos C + c cos A) + (b cos A + ...
= (a cosC + b cosC) + ( b cos A + c cos A) + (c cos B + a cos B) = (a cos C + c cos A) + (b cos A + a cos B) + (c cos B + b cos C) = a + b + c =R.H.S.
Ex.(9) In △ABC, prove that a(cos C - cos B) = 2(b - c) cos2(2A)
Solution : By Projection rule, we have a cos C + c cos A = b and a cos B
∴ a cos C = b – c cos A and a cos B = c - b cos A
Answer
a(cos C - cos B)=2(b-c)cos^2(A/2).
Explanation
Solution
Explanation:
-
By the projection rule, we have:
- acosC+ccosA=b ⇒ acosC=b−ccosA,
- acosB+bcosA=c ⇒ acosB=c−bcosA.
-
Subtract the second equation from the first:
a(cosC−cosB)=(b−ccosA)−(c−bcosA)=(b−c)+(b−c)cosA. -
Factor out (b−c):
a(cosC−cosB)=(b−c)(1+cosA). -
Recall the half-angle identity:
1+cosA=2cos22A. -
Thus, we obtain:
a(cosC−cosB)=2(b−c)cos22A.
Answer: The identity is proven:
a(cosC−cosB)=2(b−c)cos22A.Details:
- Subject: Mathematics
- Chapter: Trigonometry
- Topic: Trigonometric Identities and Projection Rule
Difficulty Level: Easy
Question Type: descriptive