Solveeit Logo

Question

Question: A vector with magnitude of 3 units, which is perpendicular to each of the vectors $\vec{a}=3i+j-4k$ ...

A vector with magnitude of 3 units, which is perpendicular to each of the vectors a=3i+j4k\vec{a}=3i+j-4k and b=6i+5j2k\vec{b} = 6i + 5j - 2k is given by

A

±(2i2jk)\pm(2i-2j-k)

B

±(2i2j+k)\pm (2i-2j+k)

C

±(2i+2j+k)\pm (2i+2j+k)

D

±(2i+2jk)\pm (2i+2j-k)

Answer

±(2i2j+k)\pm (2i-2j+k)

Explanation

Solution

To find a vector perpendicular to both a\vec{a} and b\vec{b}, we compute their cross product:

a×b=ijk314652=i(1(2)(45))j(3(2)(46))+k(3516)=18i18j+9k=9(2i2j+k)\vec{a} \times \vec{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & -4 \\ 6 & 5 & -2 \end{vmatrix} = \mathbf{i}(1 \cdot (-2) - (-4 \cdot 5)) - \mathbf{j}(3 \cdot (-2) - (-4 \cdot 6)) + \mathbf{k}(3 \cdot 5 - 1 \cdot 6) = 18\mathbf{i} - 18\mathbf{j} + 9\mathbf{k} = 9(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})

The resulting vector is proportional to 2i2j+k2\mathbf{i} - 2\mathbf{j} + \mathbf{k}.

Now, we need to scale this vector to have a magnitude of 3. The magnitude of 2i2j+k2\mathbf{i} - 2\mathbf{j} + \mathbf{k} is:

22+(2)2+12=4+4+1=9=3\sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3

Since the magnitude is already 3, the required vector is ±(2i2j+k)\pm (2\mathbf{i} - 2\mathbf{j} + \mathbf{k}).