Question
Question: If $|z_1|=2, |z_2|=3, |z_3|=4$ and $|2z_1+3z_2+4z_3|=9$, then value of $|8z_2z_3+27z_3z_1+64z_1z_2|$...
If ∣z1∣=2,∣z2∣=3,∣z3∣=4 and ∣2z1+3z2+4z3∣=9, then value of ∣8z2z3+27z3z1+64z1z2∣ is equal to :-
A
216
B
108
C
42
D
56
Answer
216
Explanation
Solution
Solution Explanation:
We are given
∣z1∣=2,∣z2∣=3,∣z3∣=4,and∣2z1+3z2+4z3∣=9.Notice that the expression to evaluate is
8z2z3+27z3z1+64z1z2.Rewrite each term by dividing by z1z2z3:
z1z2z38z2z3+z1z2z327z3z1+z1z2z364z1z2=z18+z227+z364.Using the property
z1=∣z∣2z,we get:
z18=48z1=2z1,z227=927z2=3z2,z364=1664z3=4z3.Thus,
z1z2z38z2z3+27z3z1+64z1z2=2z1+3z2+4z3.Multiplying both sides by z1z2z3 gives:
8z2z3+27z3z1+64z1z2=z1z2z3(2z1+3z2+4z3).Taking moduli and using ∣z1z2z3∣=∣z1∣∣z2∣∣z3∣ and ∣a∣=∣a∣, we have:
∣8z2z3+27z3z1+64z1z2∣=∣z1∣∣z2∣∣z3∣∣2z1+3z2+4z3∣.Substitute the given values:
∣z1∣∣z2∣∣z3∣=2×3×4=24,and∣2z1+3z2+4z3∣=9.Thus,
∣8z2z3+27z3z1+64z1z2∣=24×9=216.Answer: 216 (Option A)