Solveeit Logo

Question

Question: If $|z_1|=2, |z_2|=3, |z_3|=4$ and $|2z_1+3z_2+4z_3|=9$, then value of $|8z_2z_3+27z_3z_1+64z_1z_2|$...

If z1=2,z2=3,z3=4|z_1|=2, |z_2|=3, |z_3|=4 and 2z1+3z2+4z3=9|2z_1+3z_2+4z_3|=9, then value of 8z2z3+27z3z1+64z1z2|8z_2z_3+27z_3z_1+64z_1z_2| is equal to :-

A

216

B

108

C

42

D

56

Answer

216

Explanation

Solution

Solution Explanation:

We are given

z1=2,z2=3,z3=4,and2z1+3z2+4z3=9.|z_1|=2,\quad |z_2|=3,\quad |z_3|=4,\quad \text{and} \quad |2z_1+3z_2+4z_3|=9.

Notice that the expression to evaluate is

8z2z3+27z3z1+64z1z2.8z_2z_3+27z_3z_1+64z_1z_2.

Rewrite each term by dividing by z1z2z3z_1z_2z_3:

8z2z3z1z2z3+27z3z1z1z2z3+64z1z2z1z2z3=8z1+27z2+64z3.\frac{8z_2z_3}{z_1z_2z_3} + \frac{27z_3z_1}{z_1z_2z_3}+\frac{64z_1z_2}{z_1z_2z_3} = \frac{8}{z_1}+\frac{27}{z_2}+\frac{64}{z_3}.

Using the property

1z=zz2,\frac{1}{z}=\frac{\overline{z}}{|z|^2},

we get:

8z1=8z14=2z1,27z2=27z29=3z2,64z3=64z316=4z3.\frac{8}{z_1}= \frac{8 \overline{z_1}}{4}=2\overline{z_1},\quad \frac{27}{z_2}= \frac{27 \overline{z_2}}{9}=3\overline{z_2},\quad \frac{64}{z_3}= \frac{64 \overline{z_3}}{16}=4\overline{z_3}.

Thus,

8z2z3+27z3z1+64z1z2z1z2z3=2z1+3z2+4z3.\frac{8z_2z_3+27z_3z_1+64z_1z_2}{z_1z_2z_3} = 2\overline{z_1}+3\overline{z_2}+4\overline{z_3}.

Multiplying both sides by z1z2z3z_1z_2z_3 gives:

8z2z3+27z3z1+64z1z2=z1z2z3(2z1+3z2+4z3).8z_2z_3+27z_3z_1+64z_1z_2 = z_1z_2z_3(2\overline{z_1}+3\overline{z_2}+4\overline{z_3}).

Taking moduli and using z1z2z3=z1z2z3|z_1z_2z_3| = |z_1||z_2||z_3| and a=a|\,\overline{a}|=|a|, we have:

8z2z3+27z3z1+64z1z2=z1z2z32z1+3z2+4z3.|8z_2z_3+27z_3z_1+64z_1z_2| = |z_1||z_2||z_3|\,|2z_1+3z_2+4z_3|.

Substitute the given values:

z1z2z3=2×3×4=24,and2z1+3z2+4z3=9.|z_1||z_2||z_3| = 2\times3\times4 = 24,\quad \text{and}\quad |2z_1+3z_2+4z_3| = 9.

Thus,

8z2z3+27z3z1+64z1z2=24×9=216.|8z_2z_3+27z_3z_1+64z_1z_2| = 24 \times 9 = 216.

Answer: 216 (Option A)