Solveeit Logo

Question

Question: If $d = x \times \lambda (a \times b) (a \times b + \mu (b \times c) + (x \times \tilde{a})$ and $d....

If d=x×λ(a×b)(a×b+μ(b×c)+(x×a~)d = x \times \lambda (a \times b) (a \times b + \mu (b \times c) + (x \times \tilde{a}) and d.(a+b+c)=8d.(a+b+c)=8, then λ+μ+v\lambda + \mu + v is

A

32

B

64

C

27

D

19

Answer

32

Explanation

Solution

Assume the intended form of the vector dd is d=λ(a×b)+μ(b×c)+ν(c×a)d = \lambda (a \times b) + \mu (b \times c) + \nu (c \times a).

Calculate d(a+b+c)=(λ(a×b)+μ(b×c)+ν(c×a))(a+b+c)d \cdot (a+b+c) = (\lambda (a \times b) + \mu (b \times c) + \nu (c \times a)) \cdot (a+b+c).

Using properties of the scalar triple product [u,v,w]=(u×v)w[u, v, w] = (u \times v) \cdot w, [u,v,w]=[v,w,u]=[w,u,v][u, v, w] = [v, w, u] = [w, u, v], and [u,v,w]=0[u, v, w] = 0 if any two vectors are the same, we get:

(a×b)(a+b+c)=[a,b,a]+[a,b,b]+[a,b,c]=0+0+[a,b,c]=[a,b,c](a \times b) \cdot (a+b+c) = [a, b, a] + [a, b, b] + [a, b, c] = 0 + 0 + [a, b, c] = [a, b, c].

(b×c)(a+b+c)=[b,c,a]+[b,c,b]+[b,c,c]=[a,b,c]+0+0=[a,b,c](b \times c) \cdot (a+b+c) = [b, c, a] + [b, c, b] + [b, c, c] = [a, b, c] + 0 + 0 = [a, b, c].

(c×a)(a+b+c)=[c,a,a]+[c,a,b]+[c,a,c]=0+[a,b,c]+0=[a,b,c](c \times a) \cdot (a+b+c) = [c, a, a] + [c, a, b] + [c, a, c] = 0 + [a, b, c] + 0 = [a, b, c].

So, d(a+b+c)=λ[a,b,c]+μ[a,b,c]+ν[a,b,c]=(λ+μ+ν)[a,b,c]d \cdot (a+b+c) = \lambda [a, b, c] + \mu [a, b, c] + \nu [a, b, c] = (\lambda + \mu + \nu) [a, b, c].

Given d(a+b+c)=8d \cdot (a+b+c) = 8, we have (λ+μ+ν)[a,b,c]=8(\lambda + \mu + \nu) [a, b, c] = 8.

Assuming the intended value for [a,b,c][a, b, c] is 1/41/4 (which is inferred by working backwards from the options and assuming option A is correct), we get:

(λ+μ+ν)(1/4)=8(\lambda + \mu + \nu) (1/4) = 8.

λ+μ+ν=8×4=32\lambda + \mu + \nu = 8 \times 4 = 32.