Question
Question: The average speed of molecules in a sample of ozone gas is $1.84 \times 10^4 \text{ cm s}^{-1}$. The...
The average speed of molecules in a sample of ozone gas is 1.84×104 cm s−1. The average translating kinetic energy per molecules is xJ. The value of 2x×1022 is

8
16
4
2
8
Solution
The average speed of gas molecules is given by vavg=πm8kT. The average translational kinetic energy per molecule is KEavg=23kT. We can rewrite the average speed formula as vavg=3π8m3kT. Given vavg=1.84×104 cm s−1=1.84×102 m s−1 and 3π8=0.92. Substituting these values: 1.84×102 m s−1=0.92m3kT 0.921.84×102 m s−1=m3kT 2×102 m s−1=m3kT Squaring both sides: (2×102 m s−1)2=m3kT 4×104 m2 s−2=m3kT 3kT=m×(4×104 m2 s−2) Since KEavg=23kT, we have kT=32KEavg. Substituting this into the equation for 3kT: 3(32KEavg)=m×4×104 m2 s−2 2KEavg=m×4×104 m2 s−2 KEavg=m×2×104 m2 s−2 The problem states that the average translational kinetic energy per molecule is x J. Therefore, x=KEavg in Joules. The molar mass of O3=3×16=48 g/mol=0.048 kg/mol. Avogadro's number NA=6×1023 mol−1. Mass of one molecule m=NAMolar mass=6×1023 mol−10.048 kg/mol=8×10−26 kg. Now, calculate x: x=(8×10−26 kg)×(2×104 m2 s−2)=16×10−22 J. The question asks for the value of 2x×1022. 2x×1022=216×10−22 J×1022=8×10−22×1022=8×100=8.