Solveeit Logo

Question

Question: The average speed of molecules in a sample of ozone gas is $1.84 \times 10^4 \text{ cm s}^{-1}$. The...

The average speed of molecules in a sample of ozone gas is 1.84×104 cm s11.84 \times 10^4 \text{ cm s}^{-1}. The average translating kinetic energy per molecules is xJ. The value of x2×1022\frac{x}{2} \times 10^{22} is

A

8

B

16

C

4

D

2

Answer

8

Explanation

Solution

The average speed of gas molecules is given by vavg=8kTπmv_{avg} = \sqrt{\frac{8kT}{\pi m}}. The average translational kinetic energy per molecule is KEavg=32kTKE_{avg} = \frac{3}{2} kT. We can rewrite the average speed formula as vavg=83π3kTmv_{avg} = \sqrt{\frac{8}{3\pi}} \sqrt{\frac{3kT}{m}}. Given vavg=1.84×104 cm s1=1.84×102 m s1v_{avg} = 1.84 \times 10^4 \text{ cm s}^{-1} = 1.84 \times 10^2 \text{ m s}^{-1} and 83π=0.92\sqrt{\frac{8}{3\pi}} = 0.92. Substituting these values: 1.84×102 m s1=0.923kTm1.84 \times 10^2 \text{ m s}^{-1} = 0.92 \sqrt{\frac{3kT}{m}} 1.84×1020.92 m s1=3kTm\frac{1.84 \times 10^2}{0.92} \text{ m s}^{-1} = \sqrt{\frac{3kT}{m}} 2×102 m s1=3kTm2 \times 10^2 \text{ m s}^{-1} = \sqrt{\frac{3kT}{m}} Squaring both sides: (2×102 m s1)2=3kTm(2 \times 10^2 \text{ m s}^{-1})^2 = \frac{3kT}{m} 4×104 m2 s2=3kTm4 \times 10^4 \text{ m}^2\text{ s}^{-2} = \frac{3kT}{m} 3kT=m×(4×104 m2 s2)3kT = m \times (4 \times 10^4 \text{ m}^2\text{ s}^{-2}) Since KEavg=32kTKE_{avg} = \frac{3}{2} kT, we have kT=23KEavgkT = \frac{2}{3} KE_{avg}. Substituting this into the equation for 3kT3kT: 3(23KEavg)=m×4×104 m2 s23 \left( \frac{2}{3} KE_{avg} \right) = m \times 4 \times 10^4 \text{ m}^2\text{ s}^{-2} 2KEavg=m×4×104 m2 s22 KE_{avg} = m \times 4 \times 10^4 \text{ m}^2\text{ s}^{-2} KEavg=m×2×104 m2 s2KE_{avg} = m \times 2 \times 10^4 \text{ m}^2\text{ s}^{-2} The problem states that the average translational kinetic energy per molecule is xx J. Therefore, x=KEavgx = KE_{avg} in Joules. The molar mass of O3=3×16=48 g/mol=0.048 kg/molO_3 = 3 \times 16 = 48 \text{ g/mol} = 0.048 \text{ kg/mol}. Avogadro's number NA=6×1023 mol1N_A = 6 \times 10^{23} \text{ mol}^{-1}. Mass of one molecule m=Molar massNA=0.048 kg/mol6×1023 mol1=8×1026 kgm = \frac{\text{Molar mass}}{N_A} = \frac{0.048 \text{ kg/mol}}{6 \times 10^{23} \text{ mol}^{-1}} = 8 \times 10^{-26} \text{ kg}. Now, calculate xx: x=(8×1026 kg)×(2×104 m2 s2)=16×1022 Jx = (8 \times 10^{-26} \text{ kg}) \times (2 \times 10^4 \text{ m}^2\text{ s}^{-2}) = 16 \times 10^{-22} \text{ J}. The question asks for the value of x2×1022\frac{x}{2} \times 10^{22}. x2×1022=16×1022 J2×1022=8×1022×1022=8×100=8\frac{x}{2} \times 10^{22} = \frac{16 \times 10^{-22} \text{ J}}{2} \times 10^{22} = 8 \times 10^{-22} \times 10^{22} = 8 \times 10^0 = 8.