Solveeit Logo

Question

Question: if $f(x + \frac{1}{x}) = x^2 + \frac{1}{x^2}$ then f(x) = ?...

if f(x+1x)=x2+1x2f(x + \frac{1}{x}) = x^2 + \frac{1}{x^2} then f(x) = ?

A

(x22)(x^2 - 2)

B

(x2+1)(x^2 + 1)

C

(x21)(x^2 - 1)

D

x2x^2

Answer

(x22)(x^2 - 2)

Explanation

Solution

Let

u=x+1xu = x + \frac{1}{x}.

Then

u2=(x+1x)2=x2+2+1x2x2+1x2=u22u^2 = \left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} \quad \Rightarrow \quad x^2 + \frac{1}{x^2} = u^2 - 2.

Since the given equation is

f(x+1x)=x2+1x2f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2},

we substitute uu to obtain:

f(u)=u22f(u)= u^2 - 2.

Thus, replacing uu by xx (as the function variable), we get:

f(x)=x22f(x) = x^2 - 2.