Solveeit Logo

Question

Question: The set of all values of $a$ for which $\lim_{x\to a}([\![x-5]\!]-[\![2x+2]\!])=0$, where $[\alpha]...

The set of all values of aa for which

limxa([ ⁣[x5] ⁣][ ⁣[2x+2] ⁣])=0\lim_{x\to a}([\![x-5]\!]-[\![2x+2]\!])=0, where [α][\alpha] denotes the greatest integer less than or equal to α\alpha is equal to

A

[-7.5, -6.5)

B

(-7.5, -6.5)

C

(-7.5, -6.5]

D

[-7.5, -6.5]

Answer

(-7.5, -6.5)

Explanation

Solution

Let f(x)=[ ⁣[x5] ⁣][ ⁣[2x+2] ⁣]f(x) = [\![x-5]\!] - [\![2x+2]\!]. We are looking for the set of all values of aa for which limxaf(x)=0\lim_{x\to a} f(x) = 0. For the limit to exist and be equal to 0, the left-hand limit (LHL) and the right-hand limit (RHL) must both exist and be equal to 0.

Let g(x)=[ ⁣[x5] ⁣]g(x) = [\![x-5]\!] and h(x)=[ ⁣[2x+2] ⁣]h(x) = [\![2x+2]\!]. The limits of g(x)g(x) and h(x)h(x) as xax \to a depend on whether a5a-5 and 2a+22a+2 are integers.

limxa[ ⁣[x5] ⁣]={[ ⁣[a5] ⁣]if a5Z[ ⁣[a5] ⁣]1if a5Z\lim_{x\to a^-} [\![x-5]\!] = \begin{cases} [\![a-5]\!] & \text{if } a-5 \notin \mathbb{Z} \\ [\![a-5]\!]-1 & \text{if } a-5 \in \mathbb{Z} \end{cases} limxa+[ ⁣[x5] ⁣]=[ ⁣[a5] ⁣]\lim_{x\to a^+} [\![x-5]\!] = [\![a-5]\!]

limxa[ ⁣[2x+2] ⁣]={[ ⁣[2a+2] ⁣]if 2a+2Z[ ⁣[2a+2] ⁣]1if 2a+2Z\lim_{x\to a^-} [\![2x+2]\!] = \begin{cases} [\![2a+2]\!] & \text{if } 2a+2 \notin \mathbb{Z} \\ [\![2a+2]\!]-1 & \text{if } 2a+2 \in \mathbb{Z} \end{cases} limxa+[ ⁣[2x+2] ⁣]=[ ⁣[2a+2] ⁣]\lim_{x\to a^+} [\![2x+2]\!] = [\![2a+2]\!]

Let I1=1I_1 = 1 if a5Za-5 \in \mathbb{Z} and I1=0I_1 = 0 if a5Za-5 \notin \mathbb{Z}. Let I2=1I_2 = 1 if 2a+2Z2a+2 \in \mathbb{Z} and I2=0I_2 = 0 if 2a+2Z2a+2 \notin \mathbb{Z}.

LHL = limxag(x)limxah(x)=([ ⁣[a5] ⁣]I1)([ ⁣[2a+2] ⁣]I2)=[ ⁣[a5] ⁣][ ⁣[2a+2] ⁣]I1+I2\lim_{x\to a^-} g(x) - \lim_{x\to a^-} h(x) = ([\![a-5]\!] - I_1) - ([\![2a+2]\!] - I_2) = [\![a-5]\!] - [\![2a+2]\!] - I_1 + I_2. RHL = limxa+g(x)limxa+h(x)=[ ⁣[a5] ⁣][ ⁣[2a+2] ⁣]\lim_{x\to a^+} g(x) - \lim_{x\to a^+} h(x) = [\![a-5]\!] - [\![2a+2]\!].

For the limit to exist and be 0, we must have LHL = RHL = 0. RHL = [ ⁣[a5] ⁣][ ⁣[2a+2] ⁣]=0    [ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣][\![a-5]\!] - [\![2a+2]\!] = 0 \implies [\![a-5]\!] = [\![2a+2]\!]. Let k=[ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣]k = [\![a-5]\!] = [\![2a+2]\!] for some integer kk.

If RHL = 0, then LHL = 0I1+I20 - I_1 + I_2. For LHL = 0, we need I1=I2I_1 = I_2. This means that either both a5a-5 and 2a+22a+2 are integers (I1=1,I2=1I_1=1, I_2=1) or neither is an integer (I1=0,I2=0I_1=0, I_2=0).

Condition 1: [ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣][\![a-5]\!] = [\![2a+2]\!]. Let this common integer value be kk. ka5<k+1    k+5a<k+6k \le a-5 < k+1 \implies k+5 \le a < k+6. k2a+2<k+1    k22a<k1    k22a<k12k \le 2a+2 < k+1 \implies k-2 \le 2a < k-1 \implies \frac{k-2}{2} \le a < \frac{k-1}{2}. So, aa must be in the intersection of [k+5,k+6)[k+5, k+6) and [k22,k12)[\frac{k-2}{2}, \frac{k-1}{2}). Intersection interval: [max(k+5,k22),min(k+6,k12))[\max(k+5, \frac{k-2}{2}), \min(k+6, \frac{k-1}{2})). For the intersection to be non-empty, max(k+5,k22)<min(k+6,k12)\max(k+5, \frac{k-2}{2}) < \min(k+6, \frac{k-1}{2}). This requires k+5<k12k+5 < \frac{k-1}{2} and k22<k+6\frac{k-2}{2} < k+6. 2k+10<k1    k<112k+10 < k-1 \implies k < -11. k2<2k+12    14<kk-2 < 2k+12 \implies -14 < k. So, 14<k<11-14 < k < -11. The possible integer values for kk are 13-13 and 12-12.

Condition 2: I1=I2I_1 = I_2. Case 2a: I1=0I_1=0 and I2=0I_2=0. a5Za-5 \notin \mathbb{Z} and 2a+2Z2a+2 \notin \mathbb{Z}. This means aZa \notin \mathbb{Z} and aZ/2a \notin \mathbb{Z}/2 (half-integers). We need to find aa in the intersection interval for k=13k=-13 and k=12k=-12 such that aa is neither an integer nor a half-integer. For k=13k=-13: [13+5,13+6)[1322,1312)=[8,7)[7.5,7)=[7.5,7)[-13+5, -13+6) \cap [\frac{-13-2}{2}, \frac{-13-1}{2}) = [-8, -7) \cap [-7.5, -7) = [-7.5, -7). For a[7.5,7)a \in [-7.5, -7): a5[12.5,12)a-5 \in [-12.5, -12). a5a-5 is an integer only if a5=13a-5=-13 or a5=12a-5=-12, i.e., a=8a=-8 or a=7a=-7. Neither is in [7.5,7)[-7.5, -7). So a5Za-5 \notin \mathbb{Z}. 2a+2[13,12)2a+2 \in [-13, -12). 2a+22a+2 is an integer only if 2a+2=132a+2=-13 or 2a+2=122a+2=-12, i.e., a=7.5a=-7.5 or a=7a=-7. If a=7.5a=-7.5, 2a+2=13Z2a+2=-13 \in \mathbb{Z}. So a=7.5a=-7.5 is excluded from this case. If a=7a=-7, aa is an integer, so excluded from this case. For a(7.5,7)a \in (-7.5, -7), aa is not an integer and 2a+2Z2a+2 \notin \mathbb{Z}. Also a5Za-5 \notin \mathbb{Z}. So a(7.5,7)a \in (-7.5, -7) satisfies I1=0,I2=0I_1=0, I_2=0.

For k=12k=-12: [12+5,12+6)[1222,1212)=[7,6)[7,6.5)=[7,6.5)[-12+5, -12+6) \cap [\frac{-12-2}{2}, \frac{-12-1}{2}) = [-7, -6) \cap [-7, -6.5) = [-7, -6.5). For a[7,6.5)a \in [-7, -6.5): a5[12,11.5)a-5 \in [-12, -11.5). a5a-5 is an integer only if a5=12a-5=-12, i.e., a=7a=-7. 2a+2[12,11)2a+2 \in [-12, -11). 2a+22a+2 is an integer only if 2a+2=122a+2=-12, i.e., a=7a=-7. If a=7a=-7, a5=12Za-5=-12 \in \mathbb{Z} and 2a+2=12Z2a+2=-12 \in \mathbb{Z}. So a=7a=-7 is excluded from this case. For a(7,6.5)a \in (-7, -6.5), aa is not an integer. a5Za-5 \notin \mathbb{Z} and 2a+2Z2a+2 \notin \mathbb{Z}. So a(7,6.5)a \in (-7, -6.5) satisfies I1=0,I2=0I_1=0, I_2=0.

Combining these intervals, a(7.5,7)(7,6.5)=(7.5,6.5)a \in (-7.5, -7) \cup (-7, -6.5) = (-7.5, -6.5).

Case 2b: I1=1I_1=1 and I2=1I_2=1. a5Za-5 \in \mathbb{Z} and 2a+2Z2a+2 \in \mathbb{Z}. a5=n1    a=n1+5a-5 = n_1 \implies a = n_1+5 for some integer n1n_1. So aa must be an integer. 2a+2=n2    2a=n222a+2 = n_2 \implies 2a = n_2-2. If aa is an integer, 2a2a is an integer. If 2a+22a+2 is an integer, 2a2a is an integer. If aa is an integer, a5a-5 is an integer. I1=1I_1=1. If aa is an integer, 2a+22a+2 is an integer. I2=1I_2=1. So for any integer aa, I1=1I_1=1 and I2=1I_2=1. Condition I1=I2I_1=I_2 is satisfied. We also need [ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣][\![a-5]\!] = [\![2a+2]\!]. [ ⁣[a5] ⁣]=a5[\![a-5]\!] = a-5 since a5a-5 is an integer. [ ⁣[2a+2] ⁣]=2a+2[\![2a+2]\!] = 2a+2 since 2a+22a+2 is an integer. So we need a5=2a+2    a=7a-5 = 2a+2 \implies a = -7. Check if a=7a=-7 satisfies the conditions. a=7a=-7 is an integer. a5=12Za-5 = -12 \in \mathbb{Z}. 2a+2=14+2=12Z2a+2 = -14+2 = -12 \in \mathbb{Z}. I1=1,I2=1I_1=1, I_2=1. I1=I2I_1=I_2. [ ⁣[a5] ⁣]=[ ⁣[12] ⁣]=12[\![a-5]\!] = [\![-12]\!] = -12. [ ⁣[2a+2] ⁣]=[ ⁣[12] ⁣]=12[\![2a+2]\!] = [\![-12]\!] = -12. [ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣][\![a-5]\!] = [\![2a+2]\!]. So a=7a=-7 is a valid value.

Combining the results from Case 2a and Case 2b, the set of values for aa is (7.5,6.5){7}=(7.5,6.5){7}(-7.5, -6.5) \cup \{-7\} = (-7.5, -6.5) \cup \{-7\}. This set is equal to the interval [7.5,6.5)[-7.5, -6.5) with the point 7-7 included. The interval [7.5,6.5)[-7.5, -6.5) is (7.5,7){7.5}(7,6.5)(-7.5, -7) \cup \{-7.5\} \cup (-7, -6.5). The set (7.5,6.5){7}(-7.5, -6.5) \cup \{-7\} is (7.5,7)(7,6.5){7}(-7.5, -7) \cup (-7, -6.5) \cup \{-7\}. This is the interval (7.5,6.5)(-7.5, -6.5) with 7-7 included.

Let's re-examine the interval [7.5,7)[-7.5, -7) from k=13k=-13. If a=7.5a=-7.5, aa is a half-integer. a5=12.5Za-5 = -12.5 \notin \mathbb{Z}. I1=0I_1=0. 2a+2=13Z2a+2 = -13 \in \mathbb{Z}. I2=1I_2=1. I1I2I_1 \ne I_2. So a=7.5a=-7.5 is not a solution.

Let's re-examine the interval [7,6.5)[-7, -6.5) from k=12k=-12. If a=7a=-7, aa is an integer. a5=12Za-5 = -12 \in \mathbb{Z}. I1=1I_1=1. 2a+2=12Z2a+2 = -12 \in \mathbb{Z}. I2=1I_2=1. I1=I2I_1=I_2. [ ⁣[a5] ⁣]=12[\![a-5]\!] = -12. [ ⁣[2a+2] ⁣]=12[\![2a+2]\!] = -12. [ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣][\![a-5]\!] = [\![2a+2]\!]. So a=7a=-7 is a solution. If a=6.5a=-6.5, aa is a half-integer. a5=11.5Za-5 = -11.5 \notin \mathbb{Z}. I1=0I_1=0. 2a+2=13+2=11Z2a+2 = -13+2 = -11 \in \mathbb{Z}. I2=1I_2=1. I1I2I_1 \ne I_2. So a=6.5a=-6.5 is not a solution.

The set of values of aa is (7.5,6.5){7}(-7.5, -6.5) \cup \{-7\}. This set is equal to (7.5,6.5)(-7.5, -6.5). This is incorrect. Let's check the options. (a) [-7.5, -6.5) = {-7.5} U (-7.5, -6.5) = {-7.5} U (-7.5, -7) U {-7} U (-7, -6.5). We found that a(7.5,7)(7,6.5){7}a \in (-7.5, -7) \cup (-7, -6.5) \cup \{-7\}. We checked a=7.5a=-7.5 is not a solution. So the set is (7.5,6.5){7}(-7.5, -6.5) \cup \{-7\}. This is the interval (7.5,6.5)(-7.5, -6.5) with the point 7-7 included.

Let's look at the interval [7.5,6.5)[-7.5, -6.5). The points in this interval are (7.5,6.5)(-7.5, -6.5) and the endpoint 7.5-7.5. We found that a(7.5,6.5)a \in (-7.5, -6.5) are solutions if a7a \ne -7. We found that a=7a=-7 is a solution. We found that a=7.5a=-7.5 is not a solution. So the set of solutions is (7.5,6.5){7}(-7.5, -6.5) \cup \{-7\}.

Let's examine the options again. (a) [-7.5, -6.5) = {7.5}(7.5,6.5)\{-7.5\} \cup (-7.5, -6.5). (b) (-7.5, -6.5). (c) (-7.5, -6.5] = (-7.5, -6.5) {6.5}\cup \{-6.5\}. (d) [-7.5, -6.5] = {7.5}(7.5,6.5){6.5}\{-7.5\} \cup (-7.5, -6.5) \cup \{-6.5\}.

Our set is (7.5,6.5){7}(-7.5, -6.5) \cup \{-7\}. This set is not equal to any of the options as written. Let's check the derivation again. The condition is [ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣][\![a-5]\!] = [\![2a+2]\!] and I1=I2I_1 = I_2. k=[ ⁣[a5] ⁣]=[ ⁣[2a+2] ⁣]k = [\![a-5]\!] = [\![2a+2]\!] implies a[max(k+5,k22),min(k+6,k12))a \in [\max(k+5, \frac{k-2}{2}), \min(k+6, \frac{k-1}{2})). For k=13k=-13, a[7.5,7)a \in [-7.5, -7). For k=12k=-12, a[7,6.5)a \in [-7, -6.5). So a[7.5,7)[7,6.5)=[7.5,6.5)a \in [-7.5, -7) \cup [-7, -6.5) = [-7.5, -6.5).

Now check the condition I1=I2I_1 = I_2 for a[7.5,6.5)a \in [-7.5, -6.5). a[7.5,6.5)a \in [-7.5, -6.5). a5[12.5,11.5)a-5 \in [-12.5, -11.5). a5a-5 is integer only if a5=12a-5=-12, i.e., a=7a=-7. 2a+2[13,11)2a+2 \in [-13, -11). 2a+22a+2 is integer only if 2a+2=132a+2=-13 or 2a+2=122a+2=-12, i.e., a=7.5a=-7.5 or a=7a=-7.

If a=7.5a=-7.5: a5=12.5Z    I1=0a-5 = -12.5 \notin \mathbb{Z} \implies I_1=0. 2a+2=13Z    I2=12a+2 = -13 \in \mathbb{Z} \implies I_2=1. I1I2I_1 \ne I_2. Not a solution. If a(7.5,7)a \in (-7.5, -7): a5(12.5,12)Z    I1=0a-5 \in (-12.5, -12) \notin \mathbb{Z} \implies I_1=0. 2a+2(13,12)Z    I2=02a+2 \in (-13, -12) \notin \mathbb{Z} \implies I_2=0. I1=I2I_1=I_2. Solutions. If a=7a=-7: a5=12Z    I1=1a-5 = -12 \in \mathbb{Z} \implies I_1=1. 2a+2=12Z    I2=12a+2 = -12 \in \mathbb{Z} \implies I_2=1. I1=I2I_1=I_2. Solution. If a(7,6.5)a \in (-7, -6.5): a5(12,11.5)Z    I1=0a-5 \in (-12, -11.5) \notin \mathbb{Z} \implies I_1=0. 2a+2(12,11)Z    I2=02a+2 \in (-12, -11) \notin \mathbb{Z} \implies I_2=0. I1=I2I_1=I_2. Solutions.

So the set of solutions is (7.5,7){7}(7,6.5)=(7.5,6.5)(-7.5, -7) \cup \{-7\} \cup (-7, -6.5) = (-7.5, -6.5).

The final answer is (7.5,6.5)\boxed{(-7.5, -6.5)}.