Solveeit Logo

Question

Question: Determine the domain and range of the function $f(x) = - \sqrt{x^3-1}$....

Determine the domain and range of the function f(x)=x31f(x) = - \sqrt{x^3-1}.

A

Domain: [1,)[1, \infty), Range: (,0](-\infty, 0]

B

Domain: (,1](-\infty, 1], Range: [0,)[0, \infty)

C

Domain: (,)(-\infty, \infty), Range: (,)(-\infty, \infty)

D

Domain: [0,)[0, \infty), Range: (,0](-\infty, 0]

Answer

Domain: [1,)[1, \infty), Range: (,0](-\infty, 0]

Explanation

Solution

To determine the domain, we need to ensure that the expression under the square root is non-negative: x310x^3 - 1 \ge 0 x31x^3 \ge 1 Taking the cube root of both sides gives: x1x \ge 1 So, the domain is [1,)[1, \infty).

To determine the range, let y=x31y = - \sqrt{x^3-1}. Since x310\sqrt{x^3-1} \ge 0 for x1x \ge 1, multiplying by 1-1 means that x310-\sqrt{x^3-1} \le 0. Thus, y0y \le 0. At the lower bound of the domain, x=1x=1: f(1)=131=0=0f(1) = - \sqrt{1^3 - 1} = - \sqrt{0} = 0 As xx approaches infinity, x31x^3-1 approaches infinity, so x31-\sqrt{x^3-1} approaches -\infty. Therefore, the range is (,0](-\infty, 0].