Solveeit Logo

Question

Question: \[- {loglog}x + c\]...

loglogx+c- {loglog}x + c

A

1xtan4xsec2x6mudx=\int_{}^{}{\frac{1}{\sqrt{x}}\tan^{4}\sqrt{x}}\sec^{2}\sqrt{x}\mspace{6mu} dx =

B

2tan5x+c2\tan^{5}\sqrt{x} + c

C

15tan5x+c\frac{1}{5}\tan^{5}\sqrt{x} + c

D

25tan5x+c\frac{2}{5}\tan^{5}\sqrt{x} + c

Answer

15tan5x+c\frac{1}{5}\tan^{5}\sqrt{x} + c

Explanation

Solution

Put x1(x+1)26mudx=\int_{}^{}{\frac{x - 1}{(x + 1)^{2}}\mspace{6mu} dx =}, therefore

log(x+1)+2x+1+c\log(x + 1) + \frac{2}{x + 1} + c

log(x+1)2x+1+c\log(x + 1) - \frac{2}{x + 1} + c.