Solveeit Logo

Question

Question: Let $\lambda \in Z$, $\vec{a} = \lambda \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = 3\hat{i} - \hat{...

Let λZ\lambda \in Z, a=λi^+j^k^\vec{a} = \lambda \hat{i} + \hat{j} - \hat{k} and b=3i^j^+2k^\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}. Let c\vec{c} be a vector such that (a+b+c)×c=0,ac=17(\vec{a} + \vec{b} + \vec{c}) \times \vec{c} = \vec{0}, \vec{a} \cdot \vec{c} = -17 and bc=20\vec{b} \cdot \vec{c} = -20. Then c×(λi^+j^+k^)2|\vec{c} \times (\lambda \hat{i} + \hat{j} + \hat{k})|^{2} is equal to :

Answer

46

Explanation

Solution

The condition (a+b+c)×c=0(\vec{a} + \vec{b} + \vec{c}) \times \vec{c} = \vec{0} implies that a+b\vec{a} + \vec{b} is parallel to c\vec{c}. Thus, c=k(a+b)\vec{c} = k(\vec{a} + \vec{b}) for some scalar kk. a+b=(λ+3)i^+k^\vec{a} + \vec{b} = (\lambda+3)\hat{i} + \hat{k}. So, c=k((λ+3)i^+k^)\vec{c} = k((\lambda+3)\hat{i} + \hat{k}). Using the given dot product conditions, ac=17\vec{a} \cdot \vec{c} = -17 and bc=20\vec{b} \cdot \vec{c} = -20, we get: k(λ2+3λ1)=17k(\lambda^2 + 3\lambda - 1) = -17 k(3λ+11)=20k(3\lambda + 11) = -20 Equating the expressions for kk gives 20λ2+9λ207=020\lambda^2 + 9\lambda - 207 = 0. The integer solution is λ=3\lambda = 3. Substituting λ=3\lambda = 3 into k(3λ+11)=20k(3\lambda + 11) = -20 gives k=1k = -1. With λ=3\lambda = 3 and k=1k = -1, we find c=6i^k^\vec{c} = -6\hat{i} - \hat{k} and u=3i^+j^+k^\vec{u} = 3\hat{i} + \hat{j} + \hat{k}. The cross product c×u=i^+3j^6k^\vec{c} \times \vec{u} = \hat{i} + 3\hat{j} - 6\hat{k}. The magnitude squared is c×u2=12+32+(6)2=1+9+36=46|\vec{c} \times \vec{u}|^2 = 1^2 + 3^2 + (-6)^2 = 1 + 9 + 36 = 46.