Question
Question: Let $\lambda \in Z$, $\vec{a} = \lambda \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = 3\hat{i} - \hat{...
Let λ∈Z, a=λi^+j^−k^ and b=3i^−j^+2k^. Let c be a vector such that (a+b+c)×c=0,a⋅c=−17 and b⋅c=−20. Then ∣c×(λi^+j^+k^)∣2 is equal to :

Answer
46
Explanation
Solution
The condition (a+b+c)×c=0 implies that a+b is parallel to c. Thus, c=k(a+b) for some scalar k. a+b=(λ+3)i^+k^. So, c=k((λ+3)i^+k^). Using the given dot product conditions, a⋅c=−17 and b⋅c=−20, we get: k(λ2+3λ−1)=−17 k(3λ+11)=−20 Equating the expressions for k gives 20λ2+9λ−207=0. The integer solution is λ=3. Substituting λ=3 into k(3λ+11)=−20 gives k=−1. With λ=3 and k=−1, we find c=−6i^−k^ and u=3i^+j^+k^. The cross product c×u=i^+3j^−6k^. The magnitude squared is ∣c×u∣2=12+32+(−6)2=1+9+36=46.
