Solveeit Logo

Question

Question: A cell is constructed as: \(Ag|AgCl_{(s)}|Cl^-(0.1M)||Pb^{2+}_{(sat.soln.ofPbCl_2)}|Pb\) Calculate...

A cell is constructed as:

AgAgCl(s)Cl(0.1M)Pb(sat.soln.ofPbCl2)2+PbAg|AgCl_{(s)}|Cl^-(0.1M)||Pb^{2+}_{(sat.soln.ofPbCl_2)}|Pb

Calculate the EMF of the cell.

  • Ksp(AgCl)=1.6×1010K_{sp}(AgCl) = 1.6 \times 10^{-10}
  • Ksp(PbCl2)=1.7×105K_{sp}(PbCl_2) = 1.7 \times 10^{-5}
  • EAg+/Ag=+0.80,VE_{Ag^+/Ag}^\circ = +0.80, V
  • EPb2+/Pb=0.13,VE_{Pb^{2+}/Pb}^\circ = -0.13, V
  • [Cl]=0.1M[Cl^-] = 0.1 M
Answer

-0.46 V

Explanation

Solution

To calculate the EMF of the cell, we need to determine the potential of each half-cell using the Nernst equation and then apply the formula Ecell=EcathodeEanodeE_{cell} = E_{cathode} - E_{anode}.

The given cell notation is: AgAgCl(s)Cl(0.1M)Pb(sat.soln.ofPbCl2)2+PbAg|AgCl_{(s)}|Cl^-(0.1M)||Pb^{2+}_{(sat.soln.ofPbCl_2)}|Pb

1. Anode (Left Half-Cell): AgAgCl(s)Cl(0.1M)Ag|AgCl_{(s)}|Cl^-(0.1M)

The electrode reaction is AgCl(s)+eAg(s)+ClAgCl_{(s)} + e^- \rightleftharpoons Ag_{(s)} + Cl^-.

First, we need to calculate the standard electrode potential EAgCl/Ag,ClE^\circ_{AgCl/Ag, Cl^-}. We know the standard potential for Ag+/AgAg^+/Ag and the KspK_{sp} for AgClAgCl.

The relevant reactions are:

(1) Ag(aq)++eAg(s)Ag^+_{(aq)} + e^- \rightleftharpoons Ag_{(s)}; E1=EAg+/Ag=+0.80VE^\circ_1 = E^\circ_{Ag^+/Ag} = +0.80 \, V

(2) AgCl(s)Ag(aq)++Cl(aq)AgCl_{(s)} \rightleftharpoons Ag^+_{(aq)} + Cl^-_{(aq)}; Ksp=1.6×1010K_{sp} = 1.6 \times 10^{-10}

Adding reactions (1) and (2) gives the desired reaction:

AgCl(s)+eAg(s)+Cl(aq)AgCl_{(s)} + e^- \rightleftharpoons Ag_{(s)} + Cl^-_{(aq)}

The standard free energy change for the overall reaction is the sum of the standard free energy changes for (1) and (2):

ΔGoverall=ΔG1+ΔG2\Delta G^\circ_{overall} = \Delta G^\circ_1 + \Delta G^\circ_2

nFEoverall=nFE1RTlnKsp-nFE^\circ_{overall} = -nFE^\circ_1 - RT \ln K_{sp}

For this reaction, n=1n=1.

FEAgCl/Ag,Cl=FEAg+/AgRTlnKsp-F E^\circ_{AgCl/Ag, Cl^-} = -F E^\circ_{Ag^+/Ag} - RT \ln K_{sp}

Dividing by F-F:

EAgCl/Ag,Cl=EAg+/Ag+RTFlnKspE^\circ_{AgCl/Ag, Cl^-} = E^\circ_{Ag^+/Ag} + \frac{RT}{F} \ln K_{sp}

Using RTF=0.0591\frac{RT}{F} = 0.0591 at 298 K and lnx=2.303logx\ln x = 2.303 \log x:

EAgCl/Ag,Cl=EAg+/Ag+0.0591logKspE^\circ_{AgCl/Ag, Cl^-} = E^\circ_{Ag^+/Ag} + 0.0591 \log K_{sp}

EAgCl/Ag,Cl=0.80+0.0591log(1.6×1010)E^\circ_{AgCl/Ag, Cl^-} = 0.80 + 0.0591 \log (1.6 \times 10^{-10})

log(1.6×1010)=log1.610=0.204110=9.7959\log (1.6 \times 10^{-10}) = \log 1.6 - 10 = 0.2041 - 10 = -9.7959

EAgCl/Ag,Cl=0.80+0.0591×(9.7959)E^\circ_{AgCl/Ag, Cl^-} = 0.80 + 0.0591 \times (-9.7959)

EAgCl/Ag,Cl=0.800.5790=0.2210VE^\circ_{AgCl/Ag, Cl^-} = 0.80 - 0.5790 = 0.2210 \, V

Now, calculate the potential of the anode using the Nernst equation:

Eanode=EAgCl/Ag,Cl0.05911log[Ag(s)][Cl][AgCl(s)]E_{anode} = E^\circ_{AgCl/Ag, Cl^-} - \frac{0.0591}{1} \log \frac{[Ag_{(s)}][Cl^-]}{[AgCl_{(s)}]}

Since Ag(s)Ag_{(s)} and AgCl(s)AgCl_{(s)} are solids, their activities are 1.

Eanode=EAgCl/Ag,Cl0.05911log[Cl]E_{anode} = E^\circ_{AgCl/Ag, Cl^-} - \frac{0.0591}{1} \log [Cl^-]

Given [Cl]=0.1M[Cl^-] = 0.1 \, M.

Eanode=0.22100.0591log(0.1)E_{anode} = 0.2210 - 0.0591 \log (0.1)

Eanode=0.22100.0591×(1)E_{anode} = 0.2210 - 0.0591 \times (-1)

Eanode=0.2210+0.0591=0.2801VE_{anode} = 0.2210 + 0.0591 = 0.2801 \, V

2. Cathode (Right Half-Cell): Pb(sat.soln.ofPbCl2)2+PbPb^{2+}_{(sat.soln.ofPbCl_2)}|Pb

The electrode reaction is Pb(aq)2++2ePb(s)Pb^{2+}_{(aq)} + 2e^- \rightleftharpoons Pb_{(s)}.

First, find the concentration of Pb2+Pb^{2+} in a saturated solution of PbCl2PbCl_2.

PbCl_2_{(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2Cl^-_{(aq)}

Given Ksp(PbCl2)=1.7×105K_{sp}(PbCl_2) = 1.7 \times 10^{-5}.

Let [Pb2+]=s[Pb^{2+}] = s. Then [Cl]=2s[Cl^-] = 2s.

Ksp=[Pb2+][Cl]2=s(2s)2=4s3K_{sp} = [Pb^{2+}][Cl^-]^2 = s(2s)^2 = 4s^3

s=(Ksp4)1/3=(1.7×1054)1/3=(0.425×105)1/3=(4.25×106)1/3s = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{1.7 \times 10^{-5}}{4}\right)^{1/3} = (0.425 \times 10^{-5})^{1/3} = (4.25 \times 10^{-6})^{1/3}

s=(4.25)1/3×1021.6206×102Ms = (4.25)^{1/3} \times 10^{-2} \approx 1.6206 \times 10^{-2} \, M

So, [Pb2+]=1.6206×102M[Pb^{2+}] = 1.6206 \times 10^{-2} \, M.

Now, calculate the potential of the cathode using the Nernst equation:

Ecathode=EPb2+/Pb0.05912log[Pb(s)][Pb2+]E_{cathode} = E^\circ_{Pb^{2+}/Pb} - \frac{0.0591}{2} \log \frac{[Pb_{(s)}]}{[Pb^{2+}]}

Since Pb(s)Pb_{(s)} is a solid, its activity is 1.

Ecathode=EPb2+/Pb0.05912log1[Pb2+]E_{cathode} = E^\circ_{Pb^{2+}/Pb} - \frac{0.0591}{2} \log \frac{1}{[Pb^{2+}]}

Given EPb2+/Pb=0.13VE^\circ_{Pb^{2+}/Pb} = -0.13 \, V.

Ecathode=0.130.05912log11.6206×102E_{cathode} = -0.13 - \frac{0.0591}{2} \log \frac{1}{1.6206 \times 10^{-2}}

Ecathode=0.130.02955log(1001.6206)E_{cathode} = -0.13 - 0.02955 \log (\frac{100}{1.6206})

Ecathode=0.130.02955log(61.705)E_{cathode} = -0.13 - 0.02955 \log (61.705)

log(61.705)1.7903\log (61.705) \approx 1.7903

Ecathode=0.130.02955×1.7903E_{cathode} = -0.13 - 0.02955 \times 1.7903

Ecathode=0.130.05289=0.18289VE_{cathode} = -0.13 - 0.05289 = -0.18289 \, V

3. Calculate the EMF of the Cell:

Ecell=EcathodeEanodeE_{cell} = E_{cathode} - E_{anode}

Ecell=0.182890.2801E_{cell} = -0.18289 - 0.2801

Ecell=0.46299VE_{cell} = -0.46299 \, V

Rounded to two decimal places, Ecell=0.46VE_{cell} = -0.46 \, V.

The negative EMF indicates that the reaction as written (oxidation at Ag electrode and reduction at Pb electrode) is non-spontaneous. The spontaneous reaction would be the reverse.

Explanation of the solution:

  1. Calculate Standard Potential for AgCl/Ag, Cl- Electrode:

    The standard potential for the reaction AgCl(s)+eAg(s)+ClAgCl_{(s)} + e^- \rightleftharpoons Ag_{(s)} + Cl^- is derived from EAg+/AgE^\circ_{Ag^+/Ag} and Ksp(AgCl)K_{sp}(AgCl) using the relationship:

    EAgCl/Ag,Cl=EAg+/Ag+0.0591logKsp(AgCl)E^\circ_{AgCl/Ag, Cl^-} = E^\circ_{Ag^+/Ag} + 0.0591 \log K_{sp}(AgCl)

    EAgCl/Ag,Cl=0.80+0.0591log(1.6×1010)=0.80+0.0591×(9.7959)=0.2210VE^\circ_{AgCl/Ag, Cl^-} = 0.80 + 0.0591 \log (1.6 \times 10^{-10}) = 0.80 + 0.0591 \times (-9.7959) = 0.2210 \, V

  2. Calculate Potential of Anode (Ag|AgCl, Cl-) Electrode:

    Using the Nernst equation for the reduction reaction AgCl(s)+eAg(s)+ClAgCl_{(s)} + e^- \rightleftharpoons Ag_{(s)} + Cl^-:

    Eanode=EAgCl/Ag,Cl0.0591log[Cl]E_{anode} = E^\circ_{AgCl/Ag, Cl^-} - 0.0591 \log [Cl^-]

    Given [Cl]=0.1M[Cl^-] = 0.1 \, M:

    Eanode=0.22100.0591log(0.1)=0.22100.0591×(1)=0.2210+0.0591=0.2801VE_{anode} = 0.2210 - 0.0591 \log (0.1) = 0.2210 - 0.0591 \times (-1) = 0.2210 + 0.0591 = 0.2801 \, V

  3. Calculate Concentration of Pb2+ in Cathode (Pb2+|Pb) Electrode:

    The cathode involves a saturated solution of PbCl2PbCl_2.

    For PbCl_2_{(s)} \rightleftharpoons Pb^{2+} + 2Cl^-, Ksp=[Pb2+][Cl]2K_{sp} = [Pb^{2+}][Cl^-]^2.

    Let [Pb2+]=s[Pb^{2+}] = s, then [Cl]=2s[Cl^-] = 2s.

    Ksp=s(2s)2=4s3K_{sp} = s(2s)^2 = 4s^3

    s=(Ksp4)1/3=(1.7×1054)1/3=(4.25×106)1/31.6206×102Ms = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{1.7 \times 10^{-5}}{4}\right)^{1/3} = (4.25 \times 10^{-6})^{1/3} \approx 1.6206 \times 10^{-2} \, M

    So, [Pb2+]=1.6206×102M[Pb^{2+}] = 1.6206 \times 10^{-2} \, M.

  4. Calculate Potential of Cathode (Pb2+|Pb) Electrode:

    Using the Nernst equation for the reduction reaction Pb2++2ePb(s)Pb^{2+} + 2e^- \rightleftharpoons Pb_{(s)}:

    Ecathode=EPb2+/Pb0.05912log1[Pb2+]E_{cathode} = E^\circ_{Pb^{2+}/Pb} - \frac{0.0591}{2} \log \frac{1}{[Pb^{2+}]}

    Given EPb2+/Pb=0.13VE^\circ_{Pb^{2+}/Pb} = -0.13 \, V:

    Ecathode=0.130.05912log11.6206×102E_{cathode} = -0.13 - \frac{0.0591}{2} \log \frac{1}{1.6206 \times 10^{-2}}

    Ecathode=0.130.02955log(61.705)=0.130.02955×1.7903=0.130.05289=0.18289VE_{cathode} = -0.13 - 0.02955 \log (61.705) = -0.13 - 0.02955 \times 1.7903 = -0.13 - 0.05289 = -0.18289 \, V

  5. Calculate EMF of the Cell:

    Ecell=EcathodeEanodeE_{cell} = E_{cathode} - E_{anode}

    Ecell=0.18289V0.2801V=0.46299VE_{cell} = -0.18289 \, V - 0.2801 \, V = -0.46299 \, V

Rounded to two decimal places, Ecell=0.46VE_{cell} = -0.46 \, V.