Solveeit Logo

Question

Question: - Find number of moles and total number of atoms present in ⅰ) 18 g H₂O(s) ii) 18 ml H₂O(v) (ii) 18 ...

  • Find number of moles and total number of atoms present in ⅰ) 18 g H₂O(s) ii) 18 ml H₂O(v) (ii) 18 ml H₂O(l)
Answer

ⅰ) 18 g H₂O(s)

  • Number of moles: 1 mole
  • Total number of atoms: 1.8066×10241.8066 \times 10^{24} atoms

ii) 18 ml H₂O(v) (Assuming STP)

  • Number of moles: 0.00080357 moles
  • Total number of atoms: 1.452×10211.452 \times 10^{21} atoms

iii) 18 ml H₂O(l)

  • Number of moles: 1 mole
  • Total number of atoms: 1.8066×10241.8066 \times 10^{24} atoms
Explanation

Solution

The problem asks to calculate the number of moles and total number of atoms present in water in different states and given quantities.

Key Concepts and Formulas Used:

  1. Molar Mass (M): The mass of one mole of a substance. For H₂O, M = (2 × Atomic mass of H) + (1 × Atomic mass of O) = (2 × 1.008) + (1 × 16.00) ≈ 18 g/mol.
  2. Number of Moles (n):
    • If mass (m) is given: n=MassMolar Mass=mMn = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{m}{M}
    • If volume (V) of a gas at STP is given: n=VolumeMolar Volume at STP=V22.4 L/moln = \frac{\text{Volume}}{\text{Molar Volume at STP}} = \frac{V}{22.4 \text{ L/mol}} (or 22400 mL/mol)
  3. Avogadro's Number (N_A): The number of particles (atoms, molecules, ions, etc.) in one mole of a substance, which is approximately 6.022×1023 particles/mol6.022 \times 10^{23} \text{ particles/mol}.
  4. Number of Molecules: Number of moles × Avogadro's Number (N=n×NAN = n \times N_A)
  5. Total Number of Atoms: Number of molecules × Number of atoms per molecule.
    • For H₂O, there are 2 Hydrogen atoms and 1 Oxygen atom, so 3 atoms per molecule.
  6. Density (ρ): ρ=MassVolume\rho = \frac{\text{Mass}}{\text{Volume}}. This is used to convert volume to mass for liquids/solids.
    • Density of liquid water (H₂O(l)) is approximately 1 g/mL1 \text{ g/mL}.

Calculations:

ⅰ) 18 g H₂O(s)

  • Mass of H₂O(s): m=18 gm = 18 \text{ g}
  • Molar Mass of H₂O: M=18 g/molM = 18 \text{ g/mol}
  • Number of Moles: n=mM=18 g18 g/mol=1 moln = \frac{m}{M} = \frac{18 \text{ g}}{18 \text{ g/mol}} = 1 \text{ mol}
  • Number of Molecules: N=n×NA=1 mol×6.022×1023 molecules/mol=6.022×1023 moleculesN = n \times N_A = 1 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 6.022 \times 10^{23} \text{ molecules}
  • Total Number of Atoms: (Each H₂O molecule has 3 atoms: 2 H + 1 O) Total atoms = N×3=6.022×1023×3=1.8066×1024 atomsN \times 3 = 6.022 \times 10^{23} \times 3 = 1.8066 \times 10^{24} \text{ atoms}

ii) 18 ml H₂O(v)

  • Assumption: Water vapor (H₂O(v)) is a gas. Since no temperature or pressure is given, we assume Standard Temperature and Pressure (STP), where T = 0°C (273.15 K) and P = 1 atm. At STP, the molar volume of any ideal gas is 22.4 L/mol22.4 \text{ L/mol} or 22400 mL/mol22400 \text{ mL/mol}.
  • Volume of H₂O(v): V=18 mLV = 18 \text{ mL}
  • Number of Moles: n=VMolar Volume at STP=18 mL22400 mL/mol0.00080357 moln = \frac{V}{\text{Molar Volume at STP}} = \frac{18 \text{ mL}}{22400 \text{ mL/mol}} \approx 0.00080357 \text{ mol}
  • Number of Molecules: N=n×NA=0.00080357 mol×6.022×1023 molecules/mol4.840×1020 moleculesN = n \times N_A = 0.00080357 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} \approx 4.840 \times 10^{20} \text{ molecules}
  • Total Number of Atoms: (Each H₂O molecule has 3 atoms) Total atoms = N×3=4.840×1020×31.452×1021 atomsN \times 3 = 4.840 \times 10^{20} \times 3 \approx 1.452 \times 10^{21} \text{ atoms}

iii) 18 ml H₂O(l)

  • Assumption: The density of liquid water (H₂O(l)) is approximately 1 g/mL1 \text{ g/mL}.
  • Volume of H₂O(l): V=18 mLV = 18 \text{ mL}
  • Mass of H₂O(l): m=ρ×V=1 g/mL×18 mL=18 gm = \rho \times V = 1 \text{ g/mL} \times 18 \text{ mL} = 18 \text{ g}
  • Molar Mass of H₂O: M=18 g/molM = 18 \text{ g/mol}
  • Number of Moles: n=mM=18 g18 g/mol=1 moln = \frac{m}{M} = \frac{18 \text{ g}}{18 \text{ g/mol}} = 1 \text{ mol}
  • Number of Molecules: N=n×NA=1 mol×6.022×1023 molecules/mol=6.022×1023 moleculesN = n \times N_A = 1 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 6.022 \times 10^{23} \text{ molecules}
  • Total Number of Atoms: (Each H₂O molecule has 3 atoms) Total atoms = N×3=6.022×1023×3=1.8066×1024 atomsN \times 3 = 6.022 \times 10^{23} \times 3 = 1.8066 \times 10^{24} \text{ atoms}

Explanation of the solution:

  1. For 18 g H₂O(s): Calculate moles by dividing given mass by molar mass of H₂O (18 g/mol). Then multiply moles by Avogadro's number to get molecules, and by 3 (atoms per H₂O molecule) for total atoms.
  2. For 18 ml H₂O(v): Assume STP conditions (0°C, 1 atm) where 1 mole of gas occupies 22.4 L (22400 mL). Calculate moles by dividing the given volume by molar volume at STP. Then proceed as above to find molecules and total atoms.
  3. For 18 ml H₂O(l): Assume density of liquid water is 1 g/mL. Convert volume to mass using density. Then proceed as in part (i) to find moles, molecules, and total atoms.