Solveeit Logo

Question

Question: - Find $\frac{dy}{dx}$ if, 1) $y=\sqrt{tan\sqrt{x}}$ 6) $y=tan^{-1}(\frac{cosx}{1+sinx})$ 2) $y=log...

  • Find dydx\frac{dy}{dx} if,
  1. y=tanxy=\sqrt{tan\sqrt{x}}
  2. y=tan1(cosx1+sinx)y=tan^{-1}(\frac{cosx}{1+sinx})
  3. y=log1+cos3x1cos3xy=log \sqrt{\frac{1+cos3x}{1-cos3x}}
  4. y=cosec1(53cosx+4sinx)y=cosec^{-1}(\frac{5}{3cosx+4sinx})
  5. y=4log2sinx+9log3cosxy=4^{log_2^{sinx}} + 9^{log_3^{cosx}}
  6. y=sec1(1+e2xx2)y=sec^{-1}(\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2})
  7. y=log(x+x2+a2)y=log(x+\sqrt{x^2+a^2}).
  8. y=tan1(1+x1x1+x+1x)y=tan^{-1}(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}})
  9. y=tan1(cos5x+sin5xcos5xsin5x)y=tan^{-1}(\frac{cos5x+sin5x}{cos5x-sin5x})
  10. y=cot1(54tanx4+5tanx)y=cot^{-1}(\frac{5-4tanx}{4+5tanx})
Answer

See explanation for derivatives of each function.

Explanation

Solution

Below are the derivatives for each given function:

  1. dydx=sec2x4xtanx\frac{dy}{dx}=\frac{\sec^2\sqrt{x}}{4\sqrt{x}\,\sqrt{\tan\sqrt{x}}}

  2. dydx=3sin3x\frac{dy}{dx}=-\frac{3}{\sin3x}

  3. dydx=0\frac{dy}{dx}=0

  4. dydx=1x2+a2\frac{dy}{dx}=\frac{1}{\sqrt{x^2+a^2}}

  5. dydx=5\frac{dy}{dx}=5

  6. dydx=12\frac{dy}{dx}=-\frac{1}{2}

  7. dydx=1\frac{dy}{dx}=1

  8. dydx=e2x2xe2x4x3/21+e2xx2(1+e2xx2)21\frac{dy}{dx}=\frac{\frac{e^{2\sqrt{x}}}{2x}-\frac{e^{2\sqrt{x}}}{4x^{3/2}}}{\left|\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2}\right|\sqrt{\left(\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2}\right)^2-1}}

  9. dydx=121x2\frac{dy}{dx}=\frac{1}{2\sqrt{1-x^2}}

  10. dydx=1\frac{dy}{dx}=1

Detailed Solutions:

(1) Given:

y=tanx=(tanx)1/2y=\sqrt{\tan\sqrt{x}}=(\tan\sqrt{x})^{1/2}

Differentiate using the chain‐rule:

dydx=12(tanx)1/2sec2xddx(x)=12(tanx)1/2sec2x12x\frac{dy}{dx}=\frac{1}{2}(\tan\sqrt{x})^{-1/2}\cdot\sec^2\sqrt{x}\cdot\frac{d}{dx}(\sqrt{x}) =\frac{1}{2}(\tan\sqrt{x})^{-1/2}\cdot\sec^2\sqrt{x}\cdot\frac{1}{2\sqrt{x}}

Thus,

dydx=sec2x4xtanx\frac{dy}{dx}=\frac{\sec^2\sqrt{x}}{4\sqrt{x}\,\sqrt{\tan\sqrt{x}}}

(2) Given:

y=log1+cos3x1cos3x=12ln(1+cos3x1cos3x)y=\log\sqrt{\frac{1+\cos3x}{1-\cos3x}}=\frac{1}{2}\ln\left(\frac{1+\cos3x}{1-\cos3x}\right)

Differentiate:

dydx=12[ddxln(1+cos3x)ddxln(1cos3x)]\frac{dy}{dx}=\frac{1}{2}\left[\frac{d}{dx}\ln(1+\cos3x)-\frac{d}{dx}\ln(1-\cos3x)\right]

Since ddxcos3x=3sin3x\frac{d}{dx}\cos3x=-3\sin3x, we have

dydx=12[3sin3x1+cos3x3sin3x1cos3x]=3sin3x2[11+cos3x+11cos3x]\frac{dy}{dx}=\frac{1}{2}\left[\frac{-3\sin3x}{1+\cos3x}-\frac{3\sin3x}{1-\cos3x}\right] =-\frac{3\sin3x}{2}\left[\frac{1}{1+\cos3x}+\frac{1}{1-\cos3x}\right]

Combine the two fractions:

11+cos3x+11cos3x=(1cos3x)+(1+cos3x)1cos23x=2sin23x(since 1cos23x=sin23x)\frac{1}{1+\cos3x}+\frac{1}{1-\cos3x}=\frac{(1-\cos3x)+(1+\cos3x)}{1-\cos^2 3x} =\frac{2}{\sin^2 3x}\quad (\text{since }1-\cos^2 3x=\sin^2 3x)

Therefore,

dydx=3sin3x22sin23x=3sin3x\frac{dy}{dx}=-\frac{3\sin3x}{2}\cdot\frac{2}{\sin^2 3x}=-\frac{3}{\sin3x}

Thus,

dydx=3sin3x\frac{dy}{dx}=-\frac{3}{\sin3x}

(3) Given:

y=4log2(sinx)+9log3(cosx)y=4^{\log_{2}(\sin x)}+9^{\log_{3}(\cos x)}

Use the identity alogbc=clogbaa^{\log_b c}=c^{\log_b a}. Note that

4log2(sinx)=(sinx)log24=(sinx)2,since log24=2,4^{\log_2(\sin x)}=(\sin x)^{\log_2 4}=(\sin x)^2,\quad \text{since } \log_2 4=2,

and

9log3(cosx)=(cosx)log39=(cosx)2,since log39=2.9^{\log_{3}(\cos x)}=(\cos x)^{\log_3 9}=(\cos x)^2,\quad \text{since } \log_3 9=2.

Thus,

y=sin2x+cos2x=1dydx=0.y=\sin^2 x+\cos^2 x=1 \quad \Rightarrow \quad \frac{dy}{dx}=0.

So,

dydx=0\frac{dy}{dx}=0

(4) Given:

y=log(x+x2+a2)y=\log\Bigl(x+\sqrt{x^2+a^2}\Bigr)

Differentiate:

dydx=1x+x2+a2(1+xx2+a2)=1x2+a2.\frac{dy}{dx}=\frac{1}{x+\sqrt{x^2+a^2}} \Biggl(1+\frac{x}{\sqrt{x^2+a^2}}\Biggr) =\frac{1}{\sqrt{x^2+a^2}}.

Thus,

dydx=1x2+a2\frac{dy}{dx}=\frac{1}{\sqrt{x^2+a^2}}

(5) Given:

y=tan1(cos5x+sin5xcos5xsin5x)y=\tan^{-1}\left(\frac{\cos5x+\sin5x}{\cos5x-\sin5x}\right)

Notice that writing in terms of tangent:

cos5x+sin5xcos5xsin5x=1+tan5x1tan5x=tan(5x+π4)\frac{\cos5x+\sin5x}{\cos5x-\sin5x}=\frac{1+\tan5x}{1-\tan5x}=\tan\Bigl(5x+\frac{\pi}{4}\Bigr)

Thus,

y=tan1(tan(5x+π4))=5x+π4(within the principal value)y=\tan^{-1}\left(\tan\Bigl(5x+\frac{\pi}{4}\Bigr)\right)=5x+\frac{\pi}{4}\quad (\text{within the principal value})

Differentiate:

dydx=5\frac{dy}{dx}=5

(6) Given:

y=tan1(cosx1+sinx)y=\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)

Express in half-angle form. Write t=tanx2t=\tan\frac{x}{2}. Then using the half-angle formulas:

sinx=2t1+t2,cosx=1t21+t2\sin x=\frac{2t}{1+t^2},\quad \cos x=\frac{1-t^2}{1+t^2}

it can be shown that

cosx1+sinx=1t1+t=tan(π4x2)\frac{\cos x}{1+\sin x}=\frac{1-t}{1+t}=\tan\left(\frac{\pi}{4}-\frac{x}{2}\right)

Thus,

y=tan1(tan(π4x2))=π4x2y=\tan^{-1}\left(\tan\left(\frac{\pi}{4}-\frac{x}{2}\right)\right) =\frac{\pi}{4}-\frac{x}{2}

Differentiate:

dydx=12\frac{dy}{dx}=-\frac{1}{2}

(7) Given:

y=csc1(53cosx+4sinx)y=\csc^{-1}\Biggl(\frac{5}{3\cos x+4\sin x}\Biggr)

Recognize that 3cosx+4sinx3\cos x+4\sin x can be written as 5sin(x+α)5\sin(x+\alpha) where

sinα=35,cosα=45(α=sin1(3/5)).\sin\alpha=\frac{3}{5},\quad \cos\alpha=\frac{4}{5} \quad (\alpha=\sin^{-1}(3/5)).

Thus,

53cosx+4sinx=55sin(x+α)=csc(x+α)\frac{5}{3\cos x+4\sin x}=\frac{5}{5\sin(x+\alpha)}=\csc(x+\alpha)

and so

y=csc1(csc(x+α))=x+α,y=\csc^{-1}(\csc(x+\alpha))=x+\alpha,

up to the principal branch. Therefore,

dydx=1\frac{dy}{dx}=1

(8) Given:

y=sec1(1+e2xx2)y=\sec^{-1}\Biggl(\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2}\Biggr)

Let

u(x)=1+e2xx2.u(x)=\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2}.

The derivative formula for y=sec1(u)y=\sec^{-1}(u) is

dydx=u(x)u(x)u(x)21.\frac{dy}{dx}=\frac{u'(x)}{\left|u(x)\right|\sqrt{u(x)^2-1}}.

To find u(x)u'(x), first write:

u(x)=12+12e2xx.u(x)=\frac{1}{2}+\frac{1}{2}\,\frac{e^{2\sqrt{x}}}{\sqrt{x}}.

Differentiate the second term using the product (or quotient) rule. Writing it as

v(x)=e2xx1/2,v(x)=e^{2\sqrt{x}}\,x^{-1/2},

its derivative is:

v(x)=x1/2ddx(e2x)+e2xddx(x1/2).v'(x)=x^{-1/2}\cdot\frac{d}{dx}\Bigl(e^{2\sqrt{x}}\Bigr)+e^{2\sqrt{x}}\cdot\frac{d}{dx}\Bigl(x^{-1/2}\Bigr).

Since

ddx(e2x)=e2xddx(2x)=e2x1x,\frac{d}{dx}\Bigl(e^{2\sqrt{x}}\Bigr)=e^{2\sqrt{x}}\cdot\frac{d}{dx}(2\sqrt{x}) =e^{2\sqrt{x}}\cdot\frac{1}{\sqrt{x}},

and

ddx(x1/2)=12x3/2,\frac{d}{dx}(x^{-1/2})=-\frac{1}{2}x^{-3/2},

we get

v(x)=e2xx+(e2x2x3/2)=e2xxe2x2x3/2.v'(x)=\frac{e^{2\sqrt{x}}}{x}+ \left(-\frac{e^{2\sqrt{x}}}{2x^{3/2}}\right) =\frac{e^{2\sqrt{x}}}{x}-\frac{e^{2\sqrt{x}}}{2x^{3/2}}.

Thus,

u(x)=12v(x)=e2x2xe2x4x3/2.u'(x)=\frac{1}{2}\,v'(x) =\frac{e^{2\sqrt{x}}}{2x}-\frac{e^{2\sqrt{x}}}{4x^{3/2}}.

Finally, the derivative is:

dydx=e2x2xe2x4x3/21+e2xx2(1+e2xx2)21.\frac{dy}{dx}=\frac{\frac{e^{2\sqrt{x}}}{2x}-\frac{e^{2\sqrt{x}}}{4x^{3/2}}}{\left|\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2}\right|\sqrt{\left(\frac{1+\frac{e^{2\sqrt{x}}}{\sqrt{x}}}{2}\right)^2-1}}.

(One may leave the answer in this implicit form.)

(9) Given:

y=tan1(1+x1x1+x+1x)y=\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)

A known identity shows that

tan1(1+x1x1+x+1x)=12sin1x.\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{1}{2}\sin^{-1}x.

Differentiate:

dydx=1211x2=121x2.\frac{dy}{dx}=\frac{1}{2}\cdot\frac{1}{\sqrt{1-x^2}} =\frac{1}{2\sqrt{1-x^2}}.

(10) Given:

y=cot1(54tanx4+5tanx)y=\cot^{-1}\left(\frac{5-4\tan x}{4+5\tan x}\right)

Express in terms of tan1\tan^{-1} by using the identity cot1(z)=tan1(1/z)\cot^{-1}(z)=\tan^{-1}(1/z):

y=tan1(4+5tanx54tanx).y=\tan^{-1}\left(\frac{4+5\tan x}{5-4\tan x}\right).

Notice that

tan(x+θ)=tanx+tanθ1tanxtanθ.\tan(x+\theta)=\frac{\tan x+\tan\theta}{1-\tan x\tan\theta}.

Choosing tanθ=45\tan\theta=\frac{4}{5} we have:

tan(x+tan145)=tanx+451tanx45=5tanx+454tanx,\tan\left(x+\tan^{-1}\frac{4}{5}\right) =\frac{\tan x+\frac{4}{5}}{1-\tan x\frac{4}{5}} =\frac{5\tan x+4}{5-4\tan x},

which matches the expression. Therefore,

y=x+tan145dydx=1.y=x+\tan^{-1}\frac{4}{5}\quad \Rightarrow \quad \frac{dy}{dx}=1.

Thus,

dydx=1.\frac{dy}{dx}=1.