Solveeit Logo

Question

Question: If $P_r$ is the coefficient of $x^r$ in the expansion of $(1+x)^2\left(1+\frac{x}{2}\right)^2\left(1...

If PrP_r is the coefficient of xrx^r in the expansion of (1+x)2(1+x2)2(1+x22)2(1+x23)2(1+x)^2\left(1+\frac{x}{2}\right)^2\left(1+\frac{x}{2^2}\right)^2\left(1+\frac{x}{2^3}\right)^2..., prove that

Pr=22(2r1)(Pr1+Pr2)P_r = \frac{2^2}{(2^r-1)}(P_{r-1}+P_{r-2}) and P4=1072315P_4 = \frac{1072}{315}.

Answer

P_r = \frac{2^2}{(2^r-1)}(P_{r-1}+P_{r-2}) \text{ and } P_4 = \frac{1072}{315}

Explanation

Solution

The problem asks us to prove a recurrence relation for the coefficients PrP_r in the expansion of a given infinite product and then calculate a specific coefficient P4P_4.

Let the given expression be E(x)E(x): E(x)=(1+x)2(1+x2)2(1+x22)2(1+x23)2E(x) = (1+x)^2\left(1+\frac{x}{2}\right)^2\left(1+\frac{x}{2^2}\right)^2\left(1+\frac{x}{2^3}\right)^2 \dots This can be written as an infinite product: E(x)=k=0(1+x2k)2E(x) = \prod_{k=0}^{\infty} \left(1+\frac{x}{2^k}\right)^2 We observe a functional relationship for E(x)E(x). E(x)=(1+x20)2k=1(1+x2k)2E(x) = \left(1+\frac{x}{2^0}\right)^2 \prod_{k=1}^{\infty} \left(1+\frac{x}{2^k}\right)^2 E(x)=(1+x)2j=0(1+x/22j)2E(x) = (1+x)^2 \prod_{j=0}^{\infty} \left(1+\frac{x/2}{2^j}\right)^2 So, E(x)=(1+x)2E(x/2)E(x) = (1+x)^2 E(x/2).

Let PrP_r be the coefficient of xrx^r in the expansion of E(x)E(x). We can write E(x)E(x) as a power series: E(x)=r=0PrxrE(x) = \sum_{r=0}^{\infty} P_r x^r Substitute this into the functional equation E(x)=(1+x)2E(x/2)E(x) = (1+x)^2 E(x/2): r=0Prxr=(1+x)2r=0Pr(x2)r\sum_{r=0}^{\infty} P_r x^r = (1+x)^2 \sum_{r=0}^{\infty} P_r \left(\frac{x}{2}\right)^r r=0Prxr=(1+2x+x2)r=0Pr2rxr\sum_{r=0}^{\infty} P_r x^r = (1+2x+x^2) \sum_{r=0}^{\infty} \frac{P_r}{2^r} x^r Expand the right side: r=0Prxr=r=0Pr2rxr+2r=0Pr2rxr+1+r=0Pr2rxr+2\sum_{r=0}^{\infty} P_r x^r = \sum_{r=0}^{\infty} \frac{P_r}{2^r} x^r + 2 \sum_{r=0}^{\infty} \frac{P_r}{2^r} x^{r+1} + \sum_{r=0}^{\infty} \frac{P_r}{2^r} x^{r+2} Now, we compare the coefficients of xkx^k on both sides for k2k \ge 2: Pk=Pk2k+2Pk12k1+Pk22k2P_k = \frac{P_k}{2^k} + 2 \frac{P_{k-1}}{2^{k-1}} + \frac{P_{k-2}}{2^{k-2}} To simplify, multiply the entire equation by 2k2^k: 2kPk=Pk+22Pk1+4Pk22^k P_k = P_k + 2 \cdot 2 \cdot P_{k-1} + 4 P_{k-2} 2kPk=Pk+4Pk1+4Pk22^k P_k = P_k + 4 P_{k-1} + 4 P_{k-2} Rearrange the terms to solve for PkP_k: 2kPkPk=4Pk1+4Pk22^k P_k - P_k = 4 P_{k-1} + 4 P_{k-2} (2k1)Pk=4(Pk1+Pk2)(2^k-1)P_k = 4 (P_{k-1} + P_{k-2}) Pk=42k1(Pk1+Pk2)P_k = \frac{4}{2^k-1} (P_{k-1} + P_{k-2}) This proves the first part of the question, as 4=224=2^2. So, Pr=22(2r1)(Pr1+Pr2)P_r = \frac{2^2}{(2^r-1)}(P_{r-1}+P_{r-2}) is proven.

Next, we need to calculate P4P_4. First, we find the initial coefficients P0P_0 and P1P_1. P0P_0 is the constant term in E(x)E(x). Setting x=0x=0 in E(x)E(x), we get E(0)=(1)2(1)2(1)2=1E(0) = (1)^2(1)^2(1)^2 \dots = 1. So, P0=1P_0 = 1. P1P_1 is the coefficient of xx. E(x)=(1+2x+x2)(1+x+x2/4)(1+x/2+x2/16)(1+x/4+x2/64)E(x) = (1+2x+x^2)(1+x+x^2/4)(1+x/2+x^2/16)(1+x/4+x^2/64) \dots To get x1x^1, we take the xx term from one factor and the constant term (1) from all other factors. Coefficient of xx from (1+x)2(1+x)^2 is 22. Coefficient of xx from (1+x/2)2(1+x/2)^2 is 11. Coefficient of xx from (1+x/4)2(1+x/4)^2 is 1/21/2. Coefficient of xx from (1+x/2k)2(1+x/2^k)^2 is 1/2k11/2^{k-1}. So, P1=2+1+12+14+P_1 = 2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots This is an infinite geometric series with first term a=2a=2 and common ratio r=1/2r=1/2. The sum is a1r=211/2=21/2=4\frac{a}{1-r} = \frac{2}{1-1/2} = \frac{2}{1/2} = 4. Thus, P1=4P_1 = 4.

Now, we use the recurrence relation to find P2,P3,P4P_2, P_3, P_4: For k=2k=2: P2=4221(P1+P0)=43(4+1)=435=203P_2 = \frac{4}{2^2-1}(P_1+P_0) = \frac{4}{3}(4+1) = \frac{4}{3} \cdot 5 = \frac{20}{3} For k=3k=3: P3=4231(P2+P1)=47(203+4)=47(20+123)=47323=12821P_3 = \frac{4}{2^3-1}(P_2+P_1) = \frac{4}{7}\left(\frac{20}{3}+4\right) = \frac{4}{7}\left(\frac{20+12}{3}\right) = \frac{4}{7} \cdot \frac{32}{3} = \frac{128}{21} For k=4k=4: P4=4241(P3+P2)=415(12821+203)P_4 = \frac{4}{2^4-1}(P_3+P_2) = \frac{4}{15}\left(\frac{128}{21}+\frac{20}{3}\right) To sum the fractions, find a common denominator (21): 203=20737=14021\frac{20}{3} = \frac{20 \cdot 7}{3 \cdot 7} = \frac{140}{21}. P4=415(12821+14021)=415(128+14021)=41526821P_4 = \frac{4}{15}\left(\frac{128}{21}+\frac{140}{21}\right) = \frac{4}{15}\left(\frac{128+140}{21}\right) = \frac{4}{15} \cdot \frac{268}{21} P4=42681521=1072315P_4 = \frac{4 \cdot 268}{15 \cdot 21} = \frac{1072}{315} This matches the value given in the problem statement.