Solveeit Logo

Question

Question: \[- 2\sqrt{1 - x} + c\]...

21x+c- 2\sqrt{1 - x} + c

A

sin1x+c- \sin^{- 1}\sqrt{x} + c

B

sin1x+c\sin^{- 1}\sqrt{x} + c

C

dx1x2=\int_{}^{}{\frac{dx}{1 - x^{2}} =}

D

tan1x+c\tan^{- 1}x + c

Answer

sin1x+c\sin^{- 1}\sqrt{x} + c

Explanation

Solution

sec2x6mudxtan2x+4=\int_{}^{}{\frac{\sec^{2}x\mspace{6mu} dx}{\sqrt{\tan^{2}x + 4}} =}

Put log[tanx+tan2x+4]+c\log\left\lbrack \tan x + \sqrt{\tan^{2}x + 4} \right\rbrack + c and 12log[tanx+tan2x+4]+c\frac{1}{2}\log\left\lbrack \tan x + \sqrt{\tan^{2}x + 4} \right\rbrack + c then it

reduces to log[12tanx+12tan2x+4]+c\log\left\lbrack \frac{1}{2}\tan x + \frac{1}{2}\sqrt{\tan^{2}x + 4} \right\rbrack + c

2xtan1x21+x46mudx=\int_{}^{}\frac{2x\tan^{- 1}x^{2}}{1 + x^{4}}\mspace{6mu} dx =