Solveeit Logo

Question

Question: \(- 1\)will be real, if \(- 3\) =...

1- 1will be real, if 3- 3 =

A

1+i2+i4+i6+.....+i2n1 + i^{2} + i^{4} + i^{6} + ..... + i^{2n}

B

i2+i4+i6+......i^{2} + i^{4} + i^{6} + ......

C

(2n+1)(2n + 1)

D

None of these

[Where ii is an integer]

Answer

(2n+1)(2n + 1)

Explanation

Solution

=i(1i1000)1i=\mathbf{=}\frac{\mathbf{i(1 -}\mathbf{i}^{\mathbf{1000}}\mathbf{)}}{\mathbf{1 - i}}\mathbf{=}= i(1(i4)250)1i\frac{i(1 - (i^{4})^{250})}{1 - i}

Now, since it is real, therefore Im =i(11)1i=0= \frac{i(1 - 1)}{1 - i} = 0

x26x+10=0x^{2} - 6x + 10 = 0= 0 ⇒ x33x28x+15x^{3} - 3x^{2} - 8x + 15, =x(x26x+10)+3(x26x+10)15=x(0)+3(0)15=15= x(x^{2} - 6x + 10) + 3(x^{2} - 6x + 10) - 15 = x(0) + 3(0) - 15 = - 15

Where (1+i)2n=(1i)2n(1 + i)^{2n} = (1 - i)^{2n}, 1, 2, 3, ......

Trick : Check for (1), if (1+i1i)2n=1\Rightarrow \left( \frac{1 + i}{1 - i} \right)^{2n} = 1 the given number is absolutely real but (3) also satisfies this condition and in (1) and (3), (3) is most general value of (i)2n=1\Rightarrow (i)^{2n} = 1.